Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Emisje gazowe podczas gospodarki gnojowicą
100%
PL
Rozwój intensywnej produkcji zwierzęcej przyczynia się do skażenia środowiska naturalnego. Jednym z czynników powodujących degradację gleb, wód i atmosfery są odchody zwierzęce. Bezściółkowy system generuje odchody w postaci gnojowicy, która nieracjonalnie zagospodarowana staje się źródłem emisji gazowych. Z budynków inwentarskich podczas magazynowania oraz nawożenia gruntów rolnych dochodzi do emisji zarówno gazów odorowych, jak i cieplarnianych. Emisja amoniaku i siarkowodoru jest uciążliwa dla lokalnej społeczności. Niekorzystnie wpływa również na dobrostan utrzymywanych zwierząt i osób pracujących w budynkach inwentarskich, co może prowadzić w skrajnych przypadkach do zatrucia. Z kolei emisja metanu i podtlenku azotu pogłębia efekt cieplarniany, odpowiadający za zmiany klimatu. Dodatkowo, podtlenek azotu powoduje uszkodzenie warstwy ozonowej.
EN
Pollution of the natural environment is caused by the animal production. The intensification of animal farming results from enrichment of society and population growth. Both processes are observed on the territories of both developed and developing countries. Farm animals’ breeding is inseparably connected with gas emissions, which are the cause of the natural environment pollution. These emissions originate when the animal fodder undergoes the process of digestion. Another source of gas emission are animal faeces, which are generated in form of slurry, during the intensive animal production process. Enormous amounts of slurry are produced in the intensive waste storage conditions. It is used as a natural fertilizer, but it requires rational management, which would help to reduce the amount of emitted gases. Livestock housings and slurry containers are the most responsible sources of gas emissions. The nuisance of animal productions is connected with the emission of odour gases. They cause the decrease in the efficiency of animal production. This is also the group of gases, which are very bothersome for the local community. Hydrogen sulphide and ammonia are two representatives of odour gases. These two gases cause upper respiratory tract problems and eyes’ irritation. The exposure to greater amounts of hydrogen sulphide and ammonia may even lead to death. Both also lead to corrosion. Ammonia is the cause of acid rain, and both water and soil eutrophication. Furthermore, in agriculture, cattle’s intestinal fermentation is responsible for the highest methane emission to the environment. The emission of methane occurs also during the management of faeces. Slurry produces the biggest amount of ammonia. On this account, it is required to use it as a substrate during the fermentation process in the biogas plants. Another greenhouse gas, emitted to the atmosphere in the process of farm animals’ breeding, is nitrous oxide. It is not a widely emitted gas, but it severely deepens the greenhouse effect. Additionally, nitrous oxide contributes to the damage of the ozone layer, thereby enabling the harmful UV light to reach the Earth. In case of the threat that gas emissions brings to the natural environment, certain actions contributing to gas reduction, should have been undertaken. Slurry is being processed during its storage. That helps to limit both the greenhouse and odour gases emissions to the natural environment.
|
|
tom Nr 47
189--198
PL
Podczas produkcji zwierzęcej, która coraz bardziej się rozwija dochodzi do szkodliwych emisji gazowych. Emisje te dotyczą zarówno uciążliwych gazów odorowych jak i cieplarnianych. Powstające związki lotne przyczyniają się również do powstawania kwaśnych deszczów, eutrofizacji zbiorników wodnych i gleb, korozji w budynkach inwentarskich oraz uszkodzenia warstwy ozonowej. Wobec istniejącego problemu szuka się rozwiązań neutralizujących wpływ produkcji zwierzęcej na środowisko. Ponadto podejmuje się liczne działania na drodze żywieniowej oraz rozwiązań technologicznych. Techniki żywieniowe bazują na modyfikacji diety i wymagają stałego monitoringu utrzymywanych zwierząt. Z kolei rozwiązania technologiczne podejmują działania redukcji emisji gazów z budynków inwentarskich oraz podczas gospodarki odchodami zwierzęcymi. Proponowane sposoby utylizacji gnojowicy przynoszą zróżnicowane efekty jeśli chodzi o redukcję niebezpiecznych gazów. Wymagają one wdrożenia dodatkowych działań prowadzących między innymi do właściwego zagospodarowania odchodów zwierzęcych.
EN
During the animal production, which is increasingly expanding, it comes to harmful gas emissions. These emissions relate to both greenhouse and odorous gases emissions. The resulting volatile compounds also contribute to the formation of acid rain, eutrophication of water aquens and soils, corrosion in livestock buildings and damage of the ozone layer. Considering the existing problem, solutions neutralizing the impact of animal production on the environment, are being looked for. Moreover, numerous activities in the way of nutritional and technological solutions are undertaken. Nutritional techniques are based on diet modification and require continuous monitoring of livestock animals. On the other hand, technological solutions are taking action to reduce emissions of gases from livestock buildings and slurry management. The proposed ways of disposing slurry result in different effects in terms of reduction of dangerous gases. They require the implementation of additional actions leading, among other things, to the proper animal waste disposal.
PL
Rozwój intensywnej produkcji zwierzęcej przyczynił się do podwyższenia standardów technologicznych w rolnictwie. Rozpowszechniony w fermach przemysłowych bezściółkowy system utrzymania zwierząt odpowiada za powstawanie odchodów zwierzęcych w postaci gnojowicy. Powstające w dużej ilości odchody zwierzęce wymagają właściwego zagospodarowania w celu ochrony środowiska naturalnego. Gnojowica jest bowiem źródłem wielu zagrożeń, wśród których należy wymienić przedostawanie się w nadmiernych ilościach związków biogennych do gleb oraz wód powierzchniowych i gruntowych. Z badań wynika, że gnojowica może również zawierać metale ciężkie, które powodują zanieczyszczenie gleby i wód, ale również stanowią poważne niebezpieczeństwo dla zdrowia zwierząt i ludzi. Naturalne ekosystemy zagrożone są również emisjami gazów odorowych oraz cieplarnianych, które powstają podczas gospodarowania gnojowicą. Celem pracy jest zwrócenie uwagi na wiele właściwości gnojowicy pozwalających wykorzystać ją nie tylko jako nawóz, ale również w procesie kompostowania oraz fermentacji metanowej w biogazowniach. Poddanie gnojowicy tlenowemu procesowi jej utylizacji umożliwia uzyskanie bezpieczniejszego i stabilniejszego źródła nawozu w porównaniu z gnojowicą surową. Ze względu na obecność mikroflory bakteryjnej, duże uwodnienie czy właściwości buforujące gnojowica może być podstawą procesu produkcji biogazu.
EN
The development of intensive animal production has contributed to higher standards of technology in agriculture. Litter-free system of animal production has been widespread in industrials farms and it is responsible for the formation of animal waste in the form of slurry. Huge amount of animal excrements require a proper management in order to protect the environment. In a matter of fact slurry is the source of many threats, such as diffusing excessive amounts of nutrients to the soil and surface water and groundwater. Research shows that slurry may also contain heavy metals that cause soil and groundwater pollution. Another threat is a serious danger of animals and humans health. Natural ecosystems are threatened by the emission of gases and odorous which arise during slurry management. The aim of the study is to show the many properties that allow use manure, not only as a fertilizer, but also in the composting process and anaerobic digestion in biogas plants. The use of manure in aerobic decomposition allows for a stable source of fertilizer compared with raw slurry. Due to the presence of the bacteria, large hydration of slurry and buffer properties may be reason to use it for production of biogas.
PL
W pracy omówiono zagadnienia związane z racjonalną gospodarką odchodów zwierzęcych podczas magazynowania oraz nawozowego wykorzystania naturalnych surowców zgodnie z obowiązującym w Polsce prawem. Działania związane z właściwym zarządzaniem nawozami naturalnymi mają na celu przede wszystkim ochronę przed niekontrolowanymi emisjami gazowymi oraz skażeniem gleb i wód. Podjęty temat jest istotny nie tylko z punktu widzenia produkcji zwierzęcej, ale także ochrony środowiska naturalnego. Celem pracy było przedstawienie i porównanie technicznych i technologicznych rozwiązań magazynowania nawozów naturalnych. W niniejszej pracy wskazano również alternatywne do magazynowania technologie zagospodarowania gnojowicy i obornika, które przyczyniają się do neutralizowania ich niekorzystnego wpływu na środowisko.
EN
The paper presents Issues related to the rational management of animal manure during storage and fertilization in accordance with law In Poland. Activities related to the proper management of natural fertilizers are primarily oriented to protect against uncontrolled gas emissions and contamination of soil and water. Discussed topic is important not only from the point of view of animal production but also for environmental protection. The aim of the study was to introduce and compare the technical and technological solutions for storage of natural fertilizers. Moreover the paper also showed alternative storage technologies for slurry and manure, which contributes to neutralization of their impact on the environment.
PL
Ołów jest pierwiastkiem toksycznym, który często włącza się w łańcuch troficzny. Jest słabo podatny na migrację w głąb profilu glebowego, a jego obecność w wierzchnich warstwach gleb spowodowana jest czynnikami antropogenicznymi. Zeolity to krystaliczne, uwodnione glinokrzemiany zawierające w swojej budowie system komór oraz kanałów powiązanych ze sobą. To samo dotyczy bentonitów, które zawierają nie mniej niż 75% montmorillonitu. Obydwa minerały / sorbenty odznaczają się dużą pojemnością sorpcyjną, z przewagą dla bentonitów. Wprowadzenie do gleby tych sorbentów umożliwia skuteczne unieruchomienie zanieczyszczeń, szczególnie metali ciężkich. Badania miały na celu ocenę właściwości stabilizacyjnych zeolitu oraz bentonitu na glebach zanieczyszczonych ołowiem. Sorbenty te zastosowano w różnych dawkach (0; 0,25; 0,5; 1,0; 2,0; 3,0%) do gleby zanieczyszczonej ołowiem, a następnie inkubowano całość przez cztery miesiące. Zmierzono odczyn (pH) gleby, przewodność elektrolityczną oraz całkowitą zawartość stałych substancji rozpuszczonych. Oznaczono formy całkowite, a także formy reaktywne (w 0,11 mola CH3COOH dm-3) ołowiu. Ocenę efektywności stabilizacyjnej Pb dokonano na podstawie zawartości frakcji reaktywnej ołowiu w poszczególnych obiektach z zeolitem jak i bentonitem. Stwierdzono, że dodatek zarówno zeolitu jak i bentonitu wpłynął na zmniejszenie stężeń aktywnych form ołowiu w glebach skażonych tym pierwiastkiem. Zatem oba sorbenty posiadają dobre właściwości stabilizacyjne i mogą być wykorzystywane do skutecznego unieruchamiania ołowiu w glebie zanieczyszczonej antropogenicznie.
EN
Lead is a toxic element, which is often incorporated into the trophic chain. It is resistant to migration into the soil profile and its presence in the upper layers of the soil is caused by anthropogenic factors. Zeolites are crystalline hydrated aluminosilicates containing a system of connected chambers and channels in their structure. The same properties apply to the bentonite which contains at least 75% montmorillonite. Both clay mineral / sorbents are characterised by high sorptive properties, which are greater in the case of the bentonite. Incorporation of these sorbents into the soil can effectively immobilize contaminants, especially heavy metals. The study evaluated the properties of zeolite and bentonite for stabilizing lead (Pb) in a contaminated soil. Sorbents were applied at different rates – 0, 0.25, 0.5, 1.0, 2.0, and 3.0% – to the contaminated soil and incubated for four months. Soil reaction (pH) and the electrical conductivity (EC) were measured. The total content of Pb and the reactive forms (extracted by 0.11 mol CH3COOH dm-3) were determined in the examined soil samples. Evaluation of the stabilization efficiency of Pb was performed on the basis of the fractions of the reactive lead. It was found that the addition of both zeolite and bentonite decreased the concentrations of the active forms of lead in soils. Thus, the two sorbents are characterized by a good stability and can be used for efficiently immobilizing lead in the soil contaminated through anthropogenic activity.
PL
Osady ściekowe, jako produkt oczyszczania ścieków, wymagają właściwego zagospodarowania. Dotychczas powszechną metodą utylizacji osadów było składowanie. Jednak od 1 stycznia 2016 r. obowiązuje zakaz magazynowania, co w wielu wypadkach komplikuje możliwość ich bezpiecznego i racjonalnego wykorzystania. W związku z tym poszukuje się różnych rozwiązań i technologii umożliwiających bezpieczną ich utylizację. Jedną z nich jest rolnicze wykorzystanie. Zasobność osadów w składniki pokarmowe i materię organiczną sprawia, że stanowią one odpad o dużej wartości nawozowej. Jednak należy podkreślić, że obecność w osadach zanieczyszczeń mineralnych oraz biologicznych powoduje często ograniczenia w rolniczej utylizacji. W praktyce coraz częściej wykorzystuje się technologię opartą na procesie fermentacji metanowej, w której osady ściekowe pełnią rolę kosubstratu. Rozkład beztlenowy utylizowanego substratu wzbogaca mieszankę fermentacyjną w materię organiczną, ale również w mikroflorę bakteryjną niezbędną do prawidłowego przebiegu tego procesu. Ponadto wykorzystanie osadów ściekowych w biogazowniach umożliwia higienizację tego substratu, ze względu na temperaturę, w jakiej zachodzi fermentacja metanowa. Proces ten pozwala również na uzyskanie stabilnego i zasobnego w składniki pokarmowe pofermentu, który jest odpadem bezpieczniejszym w porównaniu z surowymi osadami ściekowymi oraz na uzysk energii elektrycznej i/lub cieplnej, co wpływa na dochodowość instalacji. Celem niniejszej pracy była analiza aktualnego stanu wiedzy na temat najważniejszych kierunków zagospodarowania osadów ściekowych oraz możliwości ich wykorzystania w procesie fermentacji metanowej.
EN
Waste water treatment in form of sewage sludge require proper disposal, such as storage which has been a common method so far. However, since January 1st, 2016 storage is legally forbidden, which in many cases complicates their safe and rational usage. For this reason, different technologies and solutions are being observed ensuring safe disposal. One of them is the agricultural use due to the abundance of waste in nutrients and organic matter. This makes sludge a valuable fertilizer which can be later used for agricultural purposes. However, the presence of mineral and biological pollutants often cause restrictions on agricultural utilization. More often for recycling sludge a methane fermentation technology is used, where sludge serves as a co-substrate. The recycled substrate in anaerobic fermentation is enriched by organic matter but also by microflora necessary for the proper process flow. Moreover, the use of sludge in a biogas plant allows for the substrate hygienisation, due to the temperature at which the methane fermentation takes place. This process results in achieving stable and nutritional digestate, which is safer in comparison to the raw sludge. This process will simultaneously yield electricity and/or heat, which affects the profitability of the system. However, the varied composition of sewage sludge and the presence of chemical and biological contaminants can contribute to the reduction of the plant efficiency planned. Therefore, the possibility of disposal of sewage sludge in biogas plants, requires periodic analysis. The aim of the study was to analyze current knowledge about sewage sludge management and their potential for methane fermentation.
EN
After entrance to EU in 2004, the management of sewage sludge has become more and more important problem for the new members. In Poland, one of the most promising technologies is composting process of sewage sludge with carbonaceous materials. However, the high price of typically used cereal straw forces the specialists to look for new and cheap materials used as donor of carbon and substrates creating good, porous structure of composted heap. This work presents the results of sewage sludge composting mixed with sawdust and maize straw used to create structure favorable for air exchange. The results show dynamic thermophilic phase of composting process in all cases where maize straw was used.
PL
Po przystąpieniu Polski do Unii Europejskiej w 2004 r. gospodarka osadami ściekowymi stała się dla nowych państw istotnym problemem. W Polsce jedną z najbardziej obiecujących technologii jest kompostowanie osadów ściekowych wraz z substratami bogatymi w węgiel. Jednakże wysoka cena słomy zbożowej stwarza konieczność poszukiwania tanich materiałów bogatych w węgiel i poprawiających porowatość kompostowanej pryzmy. W pracy zaprezentowano wyniki badań nad kompostowaniem osadów ściekowych z dodatkiem trocin oraz słomy kukurydzianej, używanej jako substrat umożliwiający lepszy przepływ powietrza. Doświadczenie zostało przeprowadzone w bioreaktorach do modelowania procesu kompostowania będących na wyposażeniu Instytutu Inżynierii Biosystemów. Wyniki dowiodły, że wystąpiła dynamicznie faza termofilna w każdej z prób, w której używano słomy kukurydzianej.
8
Content available Poznań Air Pollution Analysis for 2015–2017
63%
EN
Air pollution is the result of natural processes and intense urban development. The undesired emission of volatile substances causes environmental threats such as acid rains, aggravated greenhouse effect or the ozone depletion. Moreover, the pollution released into the air is harmful to the human respiratory system, eyes and skin. This paper presents the body of analyses conducted in Poznań between 2015–2017 on the changes in the local emission concentration of PM10 and PM2.5. The data concerning the emission of suspended particulates were provided by the meteorological station on Polanka St. in Poznań. The research included a correlation analysis. The results point to a steady decrease in the amount of produced particulates. It was also noted that the emissions of PM10 and PM2.5 change seasonally, with the highest levels in the autumn and winter. Furthermore, the amount of emitted suspended particulates is correlated with the temperature; hence, it is supposed that the main source of air pollution in Poznań involves low-efficiency heaters and boilers.
EN
The interest in biogas production in Poland is growing rapidly. This is mostly due to the fact that there is a need for handling and managing the increasing quantities of diverse bio-waste generated by industry and agriculture. Therefore, good laboratory practices and correct preparation of batch tests are very important for planning of a full-scale biogas plant. The aim of the paper was to determine the effect of mixing in the laboratory batch reactors on the biogas yield of maize straw under thermophilic conditions. The scope of this work included: (1) the analysis of basic physical and chemical parameters and (2) laboratory determination of biogas and methane yield from anaerobic digestion of maize straw with different frequencies of mixing. The obtained biogas and methane yield from the thermophilic fermentation of maize straw mixed every day was 381.89 m3·Mg-1 FM and 184.97 m3·Mg-1 FM, respectively. The results of this study confirmed the effect of no mixing inside reactors. In the batch test a decrease in biogas and methane yields was observed, by approx. 60 m3·Mg-1 and approx. 28 m3·Mg-1, respectively.
10
Content available Hydrogen and methane production from whey
63%
EN
Decreasing amount of fossil fuels in the world encourages the searching of alternative energy sources. In this time of energetic crisis, the production of hydrogen is an interesting solution. Hydrogen does not produce any contaminating emission. The aim of this study was to build a project installation that produces gas biofuels and define the potential biohydrogen and biogas possible to produce from the waste of a dairy plant. The calculations assume a production of 400 m3 per day of whey permeate from the dairy plant. The methane fermentation process was carried out according to the modified German standard DIN 38 414/S8 in the eco-technology laboratory in the Poznan University of Life Sciences. The results revealed that, with the assumed quantity of available substrate, it is possible to generate 1 570 960 m3 of hydrogen per year and 4 749 469 m3 of biogas with a methane percentage of approx. 49%. Based on these results it could be possible to build a biogas plant of an estimated power of 0,99 MW of electricity and 1,12 MW of heat, as well as the hydrogen fuel cell power of 0,32 MW of electricity.
PL
Kończące się zasoby paliw kopalnych skutkują sytuacją, w której świat staje w obliczu konieczności poszukiwania nowych, alternatywnych źródeł energii. W czasach kryzysu energetycznego interesującym rozwiązaniem wydaje się być produkcja i wykorzystanie wodoru, który zarówno w wyniku spalenia, jak i wykorzystania w ogniwie paliwowym nie emituje zanieczyszczeń środowiska. Celem pracy było określenie możliwych do wyprodukowania ilości biowodoru oraz biogazu z mleczarskiego odpadu poprodukcyjnego. W obliczeniach uwzględniono umiejscowienie instalacji przy zakładzie mleczarskim produkującym dziennie 400 m3 permeatu serwatkowego. Wykorzystano ponadto wyniki badań przeprowadzonych w Pracowni Ekotechnologii w Poznaniu uzyskane na podstawie analiz wykonanych zgodnie z obowiązującą niemiecką normą DIN 38 414/S8. Na potrzeby obliczeń posłużono się także danymi zamieszczonymi w najnowszej literaturze przedmiotu. Na postawie uzyskanych wyników wykazano, że z zakładanej ilości dostępnego substratu możliwe będzie wytworzenie rocznie 1 570 960 m3 wodoru oraz 4 749 469 m3 biogazu o procentowej zawartości metanu ok. 49%. W oparciu o te dane obliczono realną moc biogazowni na poziomie 0,99 MW energii elektrycznej oraz 1,12 MW ciepła, a także moc ogniwa paliwowego wynoszącą 0,32 MW energii elektrycznej.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.