Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Trivalent lanthanide ions display fascinating optical properties. Therefore, the rare-earth complexes of terbium fumarate heptahydrate and GdTb fumarate heptahydrate were grown by using a single gel diffusion technique. The crystals were characterized by different physicochemical techniques of characterization. UV-Vis and photoluminescence spectrophotometric experiments were carried out to study the optical properties of the grown crystals. Under various excitations (339 nm, 350 nm or 368 nm) the terbium fumarate complex emitted characteristic (4f-4f) green emission of Tb3+ (5D4)-7FJ J = 6, 5, 4 and 3, respectively). Luminescence spectra showed that Gd3+ ions in the mixed complex have not affected the luminescence emission peak positions, but remarkably increased the luminescent intensities of the terbium complex. The energy-transfer mechanism between the ligand and the central Tb3+ ions and from the Gd3+ to the Tb3+ was discussed.
2
80%
EN
Optical, dielectric, and thermal properties of lithium sulphate monohydrate crystals grown by slow evaporation method have been studied. The crystal structure was resolved by direct methods using single crystal X-ray diffraction data collected at room temperature and refined by full-matrix least-squares procedures to a final R-value of 0.0174. Plasma energy, Penn gap, Fermi energy and electronic polarizability of the grown crystal were calculated from single crystal XRD data. The electronic polarizability of lithium sulfate monohydrate was also calculated and compared with the theoretical data using Clausius-Mossotti equation. Optical band gap calculated from optical data for the grown crystal is 4.49 eV. Fourier Transform Infrared Spectroscopy study confirmed the presence of water in the crystal structure. The AC conductivity, dielectric constant and dielectric loss of the grown crystal were systemically investigated, showing a peak at about 130 °C which could be attributed to the water molecules in the crystal structure. The anomalous dielectric properties shown by the crystal have been correlated with its thermal behavior. The title crystal obeys Jonscher’s power law relation; σ(ω) = σο+ Aωs, with temperature dependent exponent s < 1. The activation energy calculated for the material is 0.24 eV and suggests protonic conduction by hopping mechanism in addition to cationic conduction by lithium ions. The micro-indentation study was also carried out which revealed that the crystal belongs to a category of soft materials.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.