Supposing that the metric space in question supports a fractional diffusion, we prove that after introducing an appropriate multiplicative factor, the Gagliardo seminorms $||f||_{W^{σ,2}}$ of a function f ∈ L²(E,μ) have the property $1/C ℰ(f,f) ≤ lim inf_{σ↗1} (1−σ)||f||_{W^{σ,2}} ≤ lim sup_{σ↗1}(1−σ) ||f||_{W^{σ,2}} ≤ Cℰ(f,f)$, where ℰ is the Dirichlet form relative to the fractional diffusion.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We outline the construction of Brownian motion on certain self-similar fractals and introduce the notion of walk dimension. We then show how the probabilistic approach relates to the theory of function spaces on fractals.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We obtain Hardy type inequalities $$\int_0^\infty {M\left( {\omega \left( r \right)\left| {u\left( r \right)} \right|} \right)\rho \left( r \right)dr} \leqslant C_1 \int_0^\infty {M\left( {\left| {u\left( r \right)} \right|} \right)\rho \left( r \right)dr + C_2 \int_0^\infty {M\left( {\left| {u'\left( r \right)} \right|} \right)\rho \left( r \right)dr,} }$$ and their Orlicz-norm counterparts $$\left\| {\omega u} \right\|_{L^M (\mathbb{R}_ + ,\rho )} \leqslant \tilde C_1 \left\| u \right\|_{L^M (\mathbb{R}_ + ,\rho )} + \tilde C_2 \left\| {u'} \right\|_{L^M (\mathbb{R}_ + ,\rho )} ,$$ with an N-function M, power, power-logarithmic and power-exponential weights ω, ρ, holding on suitable dilation invariant supersets of C 0∞(ℝ+). Maximal sets of admissible functions u are described. This paper is based on authors’ earlier abstract results and applies them to particular classes of weights.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We derive inequalities of Gagliardo-Nirenberg type in weighted Orlicz spaces on ℝⁿ, for maximal functions of derivatives and for the derivatives themselves. This is done by an application of pointwise interpolation inequalities obtained previously by the first author and of Muckenhoupt-Bloom-Kerman-type theorems for maximal functions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.