Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Seven highly conserved regions were found in caldesmon molecules from various sources using the multiple sequence alignment method. Their localization coincides with regions where the binding sites to other proteins were postulated. Less conserved and highly divergent regions of the sequences are described as well. These results could refine the planning of caldesmon gene manipulations and accelerate the precise localization of binding sites in the caldesmon molecule and, as a consequence, this could help to elucidate its function in smooth muscle contraction.
EN
The overall size and shape of the chicken gizzard calponin (CaP) h1 molecule was investigated by dynamic light scattering (DLS) measurements. From the DLS experiments, a z-averaged translational diffusion coefficient is derived (5.75 0.3) 10-7cm2s-1, which corresponds to a hydrodynamic radius of 3.72 nm for calponin. The frictional ratio (1.8 for the unhydrated molecule and 1.5 for the hydrated one) suggests a pronounced anisotropic structure for the molecule. An ellipsoidal model in length 19.4 nm and with a diameter of 2.6 nm used for hydrodynamic calculations was found to reproduce the DLS experimental data. The evaluation of the secondary structure of CaP h1 from the CD spectra by two independent methods has revealed that it contains, on average, 23% helix, 19% beta-strand, 18% beta-turns and loops, and 40% of remainder structures. These values are in good agreement with those predicted from the amino-acid sequence. Predictions used for CaP h1 were applied to other isoforms of known sequences and revealed that all calponins share a common secondary structure. Moreover, the predicted structure of the calponin CH domain is identical to that found by X-ray studies of the spectrin, fimbrin and utrophin CH domains.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.