Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
|
|
nr 2
485-493
EN
The orbit equivalence of type $III_{0}$ ergodic equivalence relations is considered. We show that it is equivalent to the outer conjugacy problem for the natural trace-scaling action of a countable dense ℝ-subgroup by automorphisms of the Radon-Nikodym skew product extensions of these relations. A similar result holds for the weak equivalence of arbitrary type $III_{0}$ cocycles with values in Abelian groups.
2
Content available remote Mod 2 normal numbers and skew products
80%
EN
Let E be an interval in the unit interval [0,1). For each x ∈ [0,1) define dₙ(x) ∈ {0,1} by $dₙ(x) := ∑_{i=1}^{n} 1_{E} ({2^{i-1}x}) (mod 2)$, where t is the fractional part of t. Then x is called a normal number mod 2 with respect to E if $N^{-1} ∑_{n=1}^{N} dₙ(x)$ converges to 1/2. It is shown that for any interval E ≠(1/6, 5/6) a.e. x is a normal number mod 2 with respect to E. For E = (1/6, 5/6) it is proved that $N^{-1} ∑_{n=1}^{N} dₙ(x)$ converges a.e. and the limit equals 1/3 or 2/3 depending on x.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.