Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, we demonstrate the result of certain machine-learning methods like support vector machine (SVM), naive Bayes (NB), decision tree (DT), k-nearest neighbor (KNN), artificial neural network (ANN), and AdaBoost algorithms for various performance characteristics to predict human body constituencies. Ayurveda-dosha studies have been used for a long time, but the quantitative reliability measurement of these diagnostic methods still lags. The careful and appropriate analysis leads to an effective treatment to predict human body constituencies. From an observation of the results, it is shown that the AdaBoost algorithm with hyperparameter tuning provides enhanced accuracy and recall (0.97), precision and F-score (0.96), and lower RSME values (0.64). The experimental results reveal that the improved model (which is based on ensemble-learning methods) significantly outperforms traditional methods. According to the findings, advancements in the proposed algorithms could give machine learning a promising future.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.