Ni-Mo alloy coatings were prepared by electrodeposition from citrate solution with pH 4.5 and different molybdate concentrations. The influence of the chemical composition of the Ni-Mo alloy on the surface morphology, structure and properties of the deposit was examined. It was observed that the coatings surface morphology changed from polyhedral to cauliflower as themolybdenum content in the deposit increased from 8.9 to 22.4 wt.%. XRD analyses revealed that all the studied coatings were characterized by the nanocrystalline, FCC single phase structure. The crystallite size (estimated from X-ray line broadening) decreased when the Mo content in the alloy was increased. The corrosion resistance of the Ni-Mo deposits was evaluated by potentiodynamic polarization measurements. It was concluded that the corrosion properties of the studied coatings depended on two contradicting factors: crystallite size and chemical composition of the Ni-Mo alloy. The microhardness of the studied coatings was improved by an increase in the molybdenum content, which was related to a crystallite size refinement.
PL
W pracy przeprowadzono badania dotyczące powłok stopowych Ni-Mo otrzymanych metodą elektrolityczną z kąpieli cytrynianowych zawierających różne stężenia molibdenianu sodu. Określono wpływ składu chemicznego powłok na ich morfologię powierzchni, strukturę, właściwości korozyjne oraz mikrotwardość. Morfologia powierzchni badanych powłok zależy w znacznym stopniu od zawartości molibdenu w stopie. Powłoka zawierająca 9% masowych Mo zbudowana jest z ziaren wielościennych, natomiast stopy o wyższej zawartości Mo (14 oraz 22% masowe) charakteryzują się globularną morfologią powierzchni. Na podstawie analizy XRD stwierdzono, iż wszystkie badane powłoki są nanokrystaliczne, jednofazowe o strukturze FCC. Rozmiar krystalitów (obliczony na podstawie szerokości połówkowej zarejestrowanych refleksów) maleje ze wzrostem zawartości molibdenu w stopie. Odporność korozyjna powłok Ni-Mo została określona na podstawie potencjodynamicznych badań polaryzacyjnych. Stwierdzono, iż właściwości korozyjne badanych powłok są uwarunkowane dwoma przeciwstawnymi parametrami: rozmiarem krystalitów oraz składem chemicznym stopu Ni-Mo. Mikrotwardość powłok wzrasta w miarę zwiększania się udziału molibdenu w stopie co związane jest ze zmniejszaniem się rozmiarów krystalitów.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Otrzymano chemiczne powłoki stopowe Ni-P i powłoki kompozytowe Ni- P-ZrO2 z kąpieli opartej na diwodorofosforanie (I) sodu oraz kwasie aminooctowym. Parametrami zmiennymi były: pH kąpieli i zawartość ZrO2 w kąpieli. Tlenek cyrkonu (IV) wbudowywany w powłokę nie powoduje zauważalnego wzrostu stopnia jej spękania. Zwiększenie pH kąpieli łączy się ze zmniejszeniem ilości P oraz ZrO2 i obniżeniem odporności korozyjnej powłoki w środowisku Na2SO4. Świadczą o tym zmiany wartości prądu korozyjnego i oporu polaryzacyjnego. Właściwości ochronne chemicznych powłok Ni-P-ZrO2 zależą od kilku czynników, w tym od: struktury, zawartości fosforu i obecności cząstek drugiej fazy. ZrO2 obecny w powłoce powoduje zwiększenie prądu korozyjnego.
EN
Electroless Ni-P coatings and Ni-P-ZrO2 composite coatings have been obtained from a solution containing aminoacetic acid and sodium hypophosphite. The coatings were deposited at different bath pH values and two different ZrO2 concentrations. The presence of zirconia in the coating did not produce any signifi cant increase in the cracking rate of the Ni-P matrix. A rise in the pH level of the bath led to a fall in the phosphorus and ZrO2 content as well as to a weakening of the coating's corrosion resistance properties in a Na2SO4 environment, which was reflected by changes in the values of the corrosion current and polarization resistance. The corrosion resistance of Ni-P-ZrO2 coatings relies on several factors including deposit structure, phosphorus content and presence of second phase particles. The presence of zirconia particles in Ni-P-ZrO2 coatings has been shown to lead to an increase in the corrosion current.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The corrosion resistance of Ni–Mo (11÷32 wt% Mo) alloy coatings during 72 h exposure in 0.5 mol·dm−3 solution of NaCl was investigated by means of EIS method. The highest corrosion resistance (charge transfer resistance >12 kΩ·cm2) among all investigated coatings was measured for Ni–Mo coatings with higher molybdenum content (21÷32 wt%). However, after 48-60 h of immersion, visible micro cracks appeared in Ni–28 wt% Mo and Ni–32 wt% Mo alloy coatings, probably due to the significant internal stresses. This phenomenon was observed especially for Ni–32 wt% Mo coating, and it was accompanied by an abrupt decrease in a charge transfer resistance from 8.7 to 2.7 kΩ·cmThe corrosion resistance of Ni–Mo (11÷32 wt% Mo) alloy coatings during 72 h exposure in 0.5 mol·dm−3 solution of NaCl was investigated by means of EIS method. The highest corrosion resistance (charge transfer resistance >12 kΩ·cm2) among all investigated coatings was measured for Ni–Mo coatings with higher molybdenum content (21÷32 wt%). However, after 48-60 h of immersion, visible micro cracks appeared in Ni–28 wt% Mo and Ni–32 wt% Mo alloy coatings, probably due to the significant internal stresses. This phenomenon was observed especially for Ni–32 wt% Mo coating, and it was accompanied by an abrupt decrease in a charge transfer resistance from 8.7 to 2.7 kΩ·cm2 after 5 and 24 h, respectively. According to EIS results, coating containing 21 wt% Mo offers the best protective properties towards steel substrate. This may be associated with the existence of a compact, tight and very thin passive layer which does not undergo damage during exposure. after 5 and 24 h, respectively. According to EIS results, coating containing 21 wt% Mo offers the best protective properties towards steel substrate. This may be associated with the existence of a compact, tight and very thin passive layer which does not undergo damage during exposure.
PL
Metodą EIS zbadano odporność na korozję powłok Ni–Mo (11÷32% mas. Mo) w czasie 72 h ekspozycji w 0,5 mol·dm−3 roztworze NaCl. Najwyższą odpornością na korozję (rezystancja przeniesienia ładunku >12 kΩ·cm2), spośród wszystkich zbadanych powłok, charakteryzowały się powłoki Ni–Mo o zawartości 21÷32% mas. molibdenu. Zauważono jednak, że po 36÷60 h ekspozycji, na powierzchni powłok Ni–28% mas. Mo oraz Ni–32% mas. Mo pojawiły się widoczne pęknięcia, których przyczyną są najprawdopodobniej duże naprężenia wewnątrz powłok. To zjawisko było szczególnie wyraźne w przypadku powłoki Ni–32% mas. Mo, bowiem towarzyszył mu gwałtowny spadek rezystancji przeniesienia ładunku z 8,7 do 2,7 kΩ·cm2 po odpowiednio 5 i 24 h ekspozycji. Zgodnie z wynikami pomiarów metodą EIS, powłoka Ni–Mo zawierająca 21% mas. Mo zapewnia najlepsze właściwości ochronne podłoża stalowego, pomimo nieznacznie niższej od powłoki Ni–28% mas. Mo rezystancji przeniesienia ładunku. Można to powiązać z wytworzeniem na jej powierzchni zwartej i bardzo cienkiej warstwy pasywnej, która nie ulega uszkodzeniu w trakcie ekspozycji w roztworze NaCl.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Magnez oraz jego stopy należą do najlżejszych materiałów konstrukcyjnych. Dzięki doskonałym właściwościom fizycznym i mechanicznym są coraz powszechniej stosowane w przemyśle lotniczym, samochodowym oraz w elektronice. Magnez jest metalem reaktywnym i bardzo podatnym na korozję, szczególnie w środowiskach zawierających jony chlorkowe, co ogranicza obszar zastosowań stopów magnezu. Z tego względu konieczne jest zabezpieczanie powierzchni elementów magnezowych poprzez nakładanie dodatkowych powłok malarskich, powłok konwersyjnych czy powłok elektrochemicznych lub stosowanie procesów anodowania oraz osadzania powłok z fazy gazowej. W artykule opisano i porównano najczęściej stosowane metody modyfikacji powierzchni stopów magnezu.
EN
Magnesium and its alloys, which are the lightest structural metal materials with excellent physical and mechanical properties are being used in a wide range of structural applications in industries as aerospace, automotive, computer and electronic. Unfortunately, magnesium is a very active metal and easy to be corroded, particularly in chloride environment. This has hindered its widespread use in many fields. Common processes used to enhance corrosion resistance include paints, conversion coatings, anodizing, vapor deposition, electrochemical plating. This review details the state of the art in coating and surface modification technologies for magnesium-based substrates.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.