Laboratory for Materials Strength Testing (LMST) has been conducting accredited mechanical research for aviation from 2003. Among accredited procedures are e.g. low and high cycle fatigue tests, fracture toughness tests and fatigue crack growth rate tests. The main goal of them is obtaining materials constants and characteristics. However knowledge how to conduct these tests could be used also in other applications, for instance in the work on development of Structural Health Monitoring systems (SHM). When cracks propagate in a controlled way in laboratory conditions, it allows verifying the operation of a single sensor or a network of sensors. In this paper, an overview of mechanical tests carried out at the Laboratory for Materials Strength Testing within Air Force Institute of Technology (AFIT) work on research and development of SHM systems is presented. Specimens prepared from materials such as aluminum alloys (among other withdrawn PZL-130 Orlik TC-II aircraft) and CFRP composite were tested under different mechanical loads, i.e., cycle and impact loads. In the presented research, both constant amplitude and spectrum loads were applied.
In this work, the compressive residual strength tests results, Compression After Impact (CAI), are presented. The specimens were made of carbon-epoxy prepreg E722-02 UHS 130-14. Two variants of specimens were tested: samples undamaged and samples with damage that was centrally introduced by a drop-weight impact, as per the ASTM D7136/7136M standard. An impactor with potential energy equal to 15J and the type of support required by the standard were used. The size of impacted damages, defined as an area of damage on a plane perpendicular to the impact direction, and the equivalent diameter were specified using the flash thermography method. The tests were performed using the fixtures manufactured according to the ASTM D7137/7137M standard. The specimens were compressed to determine the residual strength. This value was afterwards used to specify the force levels for the fatigue tests. The fatigue tests were carried out under force control – with a sinusoidal shape, stress ratio R equal to 0.1 and frequency f 1Hz. Maximum force in a loading cycle Pmax was being increased after each thousand of cycles N until its value was close to the residual strength determined in the previously mentioned tests. In this work, the following relationships were presented: force-displacement P-δ for both static and fatigue tests and displacement-loading cycles δ-N for fatigue tests. A method of conducting the fatigue tests of CFRP composite was proposed, in which both the CAI specimens and CAI fixture were used. This allowed researchers to accelerate making initial comparisons between the two groups of specimens with damages – grouped relative to the way of conditioning.
The objective of the research presented in this paper was to determine the honeycomb core compliance of a sandwich structure of the horizontal stabilizer of the MiG-29 fighter jet in the static compression test. The study of the specimen was conducted based on the ASTM C365/C365M standard. The article presents the results of experimentally determined dependencies and strength parameters, i.e. the force-displacement dependence, the compressive modulus and the honeycomb core deformations.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.