Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Some Remarkable Identities Involving Numbers
100%
|
|
nr 3
205-208
EN
The article focuses on simple identities found for binomials, their divisibility, and basic inequalities. A general formula allowing factorization of the sum of like powers is introduced and used to prove elementary theorems for natural numbers. Formulas for short multiplication are sometimes referred in English or French as remarkable identities. The same formulas could be found in works concerning polynomial factorization, where there exists no single term for various identities. Their usability is not questionable, and they have been successfully utilized since for ages. For example, in his books published in 1731 (p. 385), Edward Hatton [3] wrote: “Note, that the differences of any two like powers of two quantities, will always be divided by the difference of the quantities without any remainer...”. Despite of its conceptual simplicity, the problem of factorization of sums/differences of two like powers could still be analyzed [7], giving new and possibly interesting results [6].
2
Content available remote Fermat’s Little Theorem via Divisibility of Newton’s Binomial
100%
EN
Solving equations in integers is an important part of the number theory [29]. In many cases it can be conducted by the factorization of equation’s elements, such as the Newton’s binomial. The article introduces several simple formulas, which may facilitate this process. Some of them are taken from relevant books [28], [14]. In the second section of the article, Fermat’s Little Theorem is proved in a classical way, on the basis of divisibility of Newton’s binomial. Although slightly redundant in its content (another proof of the theorem has earlier been included in [12]), the article provides a good example, how the application of registrations could shorten the length of Mizar proofs [9], [17].
3
Content available remote On Subnomials
100%
|
|
tom 24
|
nr 4
261-273
EN
While discussing the sum of consecutive powers as a result of division of two binomials W.W. Sawyer [12] observes “It is a curious fact that most algebra textbooks give our ast result twice. It appears in two different chapters and usually there is no mention in either of these that it also occurs in the other. The first chapter, of course, is that on factors. The second is that on geometrical progressions. Geometrical progressions are involved in nearly all financial questions involving compound interest – mortgages, annuities, etc.” It’s worth noticing that the first issue involves a simple arithmetical division of 99...9 by 9. While the above notion seems not have changed over the last 50 years, it reflects only a special case of a broader class of problems involving two variables. It seems strange, that while binomial formula is discussed and studied widely [7], [8], little research is done on its counterpart with all coefficients equal to one, which we will call here the subnomial. The study focuses on its basic properties and applies it to some simple problems usually proven by induction [6].
4
Content available remote Prime Factorization of Sums and Differences of Two Like Powers
100%
|
|
tom 24
|
nr 3
187-198
EN
Representation of a non zero integer as a signed product of primes is unique similarly to its representations in various types of positional notations [4], [3]. The study focuses on counting the prime factors of integers in the form of sums or differences of two equal powers (thus being represented by 1 and a series of zeroes in respective digital bases). Although the introduced theorems are not particularly important, they provide a couple of shortcuts useful for integer factorization, which could serve in further development of Mizar projects [2]. This could be regarded as one of the important benefits of proof formalization [9].
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.