Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Wire Arc Additive Manufacturing process (WAAM) is designed for the manufacture of large metallic parts with no joints, very little waste material and hardly any support. It is gaining its space inside the naval, aeronautics and space industries. However, there are key challenges to be solved in order to increase the performance of the WAAM process. Parts with curved shapes are difficult to manufacture with regular parallel layers without support because of an excessive overhang in certain regions. This paper proposes a methodology that solves this issue, by using incrementally angled layers with variable bead height, which eliminates or decreases the overhang between layers. This solution uses an angled rotary positioner (or other method for moving the part in a controlled way) and controls key parameters like the travel speed, the deposition angle, the available bead height difference, etc. The efficiency of the developed proposal is shown with the manufacture of a large curved steel (316L) piece as a use-case.
EN
Among Metallic Additive Manufacturing processes, Directed Energy Deposition (DED) processes are very promising for the Industry. An issue that prevents a larger development of DED is the reliability of the process, since its complexity makes the result of the manufacturing variable. Thermal behavior is a critical aspect for which uncontrolled phenomena can lead to part failure. Some thermal monitoring and closed-loop control methods have been developed, that enables to observe and regulate the heating of the processed part. However, these methods rely on local measures from a region or a single external surface of a part, and thus provide partial information of thermal fields in the whole part volume. This paper proposes a method that combines diverse data to compute online a process indicator that is meaningful for the thermal state of the whole part, and hence for the control of the manufacturing of multi-beads multi-layer parts. A simulation-based model using thermal partial data is proposed. An online monitoring experiment is proposed for validation of the model. Relevance of the control method to ensure mechanical properties of the part is then tested.
EN
Metal Additive Manufacturing (MAM) is one of the innovative industrial technologies of the last decade, which presents some benefits as compared to traditional manufacturing techniques. MAM is faster, less expensive, and allow the manufacturing of large, complex components than casting, foundry etc. Understanding the influence of process parameters on the deposited matter and material characteristics is essential for the manufacturing of industrial parts. Current research concentrates on the impact of parameters on the fabricated structure geometry, microstructure and mechanical properties. There are limited number of studies, that focus on the possibility of Wire Feed Speed (WFS) parameter variation during deposition. In this work, a series of trials were realised with Cold Metal Transfer. The results showed that the quantity of material deposited was lesser than the theoretical value. The variation obtained was explained by the difference between the inputted WFS on the generator and the actual WFS output. Hence, the result on the influence of the variation of WFS on bead geometry was applied to a thermofluid model with Ti-6Al-4V alloy to confirm the sensitivity of this parameter in the quantity and geometry of the material deposited.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.