Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Asymptotic normality of the kernel estimate for the Markovian transition operator
100%
|
|
nr 1
93-105
EN
We build a kernel estimator of the Markovian transition operator as an endomorphism on L¹ for some discrete time continuous states Markov processes which satisfy certain additional regularity conditions. The main result deals with the asymptotic normality of the kernel estimator constructed.
|
|
tom 26
|
nr 3
21-43
PL
Celem niniejszej pracy jest zbadanie metodą jądra nieparametrycznego oszacowania warunkowej funkcji rozkładu zmiennej odpowiedzi skalarnej przy zmiennej losowej przyjmującej wartości w separowalnej rzeczywistej przestrzeni Hilberta, gdy obserwacje są quasi-skojarzone zależne. W pewnych ogólnych warunkach ustala się punktowo prawie zupełną zgodność ze stawkami tego estymatora. Głównym celem jest zbadanie współczynnika zbieżności proponowanego estymatora.
EN
The purpose of the paper was to investigate by the kernel method a nonparametric estimate of the conditional density function of a scalar response variable given a random variable taking values in a separable real Hilbert space when the observations are quasi-associated dependent. Under some general conditions, the authors established the pointwise almost complete consistencies with rates of this estimator. The principal aim is the investigate the convergence rate of the proposed estimator.
PL
Głównym celem artykułu jest prezentacja nieparametrycznej estymacji kwantyli rozkładu warunkowego na podstawie modelu jednoindeksowego w modelu cenzury, gdy próba jest traktowana jako niezależne zmienne losowe o identycznym rozkładzie. Przede wszystkim wprowadzono estymator jądrowy dla funkcji skumulowanego rozkładu warunkowego (cond-cdf). Następnie podano oszacowanie kwantyli przez odwrócenie oszacowanego cond-cdf. Właściwości asymptotyczne są określane, gdy obserwacje są połączone ze strukturą jednoindeksową. Na koniec przeprowadzono badanie symulacyjne, aby ocenić skuteczność tego oszacowania.
EN
The main objective of this paper was to estimate non-parametrically the quantiles of a conditional distribution based on the single-index model in the censorship model when the sample is considered as independent and identically distributed (i.i.d.) random variables. First of all, a kernel type estimator for the conditional cumulative distribution function (cond-cdf) is introduced. Then the paper gives an estimation of the quantiles by inverting this estimated cond-cdf, the asymptotic properties are stated when the observations are linked with a single-index structure. Finally, a simulation study was carried out to evaluate the performance of this estimate.
EN
The aim of this paper is to establish a nonparametric estimate of some characteristics of the conditional distribution. Kernel type estimators for the conditional cumulative distribution function and for the successive derivatives of the conditional density of a scalar response variable Y given a Hilbertian random variable X are introduced when the observations are linked with a single-index structure. We establish the pointwise almost complete convergence and the uniform almost complete convergence (with rate) of the kernel estimator of this model. Asymptotic properties are stated for each of these estimators, and they are applied to the estimation of the conditional mode and conditional quantiles.
|
2024
|
tom 28
|
nr 1
26-38
PL
W artykule autorzy prowadzą rozważania dotyczące problemu nieparametrycznej estymacji funkcji regresji, a mianowicie rozkładu warunkowego i kwantyla warunkowego w modelu pojedynczego indeksu funkcjonalnego (SFIM) przy założeniu niezależnych i z identycznym rozkładem danych z losowymi brakami danych. Głównym rezultatem przeprowadzonych badań było ustalenie asymptotycznych właściwości estymatora, takich jak prawie całkowite współczynniki zbieżności. Co więcej, asymptotyczną normalność konstruktów uzyskano dla pewnych łagodnych warunków. Na koniec omówiono, jak zastosować uzyskany wynik do skonstruowania przedziałów ufności.
EN
This work addresses the problem of the nonparametric estimation of the regression function, namely the conditional distribution and the conditional quantile in the single functional index model (SFIM) under the independent and identically distributed condition with randomly missing data. The main result of this study was the establishment of the asymptotic properties of the estimator, such as the almost complete convergence rates. Moreover, the asymptotic normality of the constructs was obtained under certain mild conditions. Lastly, the authors discussed how to apply the result to construct confidence intervals.
|
2024
|
tom 28
|
nr 1
39-60
PL
W artykule skoncentrowano się na nieparametrycznym estymowaniu warunkowej funkcji gęstości i warunkowej dominanty w modelu pojedynczego wskaźnika funkcjonalnego dla niezależnych danych, szczególnie gdy na interesującą zmienną wpływają losowo brakujące dane. Obejmuje to strukturę półparametrycznego pojedynczego modelu i proces cenzurowania zmiennych. Zgodność estymatora (ze współczynnikami) w różnych sytuacjach, np. w ramach modelu pojedynczego wskaźnika funkcjonalnego przy założeniu niezależnych i z identycznym rozkładem danych z losowymi brakami, a także jego działanie w warunkach, gdy zmienna towarzysząca jest funkcjonałem, to główne obszary zainteresowania. Dla tego modelu wyznacza się prawie całkowicie jednolitą zbieżność i wskaźnik zbieżności. Wskaźniki zbieżności podkreślają kluczową rolę, jaką prawdopodobieństwo koncentracji odgrywa w założeniach dotyczących objaśniającej zmiennej funkcjonalnej. Dodatkowo ustala się asymptotyczną normalność wyprowadzonych estymatorów zaproponowanych w określonych łagodnych warunkach, opierając się na standardowych założeniach z analizy danych funkcjonalnych dla dowodów. Na koniec zbadano praktyczne zastosowanie ustaleń w konstruowaniu przedziałów ufności dla naszych estymatorów. Wskaźniki zbieżności podkreślają kluczową rolę, jaką prawdopodobieństwo koncentracji odgrywa w założeniach dotyczących objaśniającej zmiennej funkcjonalnej.
EN
This paper concentrates on nonparametrically estimating the conditional density function and conditional mode within the single functional index model for independent data, particularly when the variable of interest is affected by randomly missing data. This involves a semi-parametric single model structure and a censoring process on the variables. The estimator's consistency (with rates) in a variety of situations, such as the framework of the single functional index model (SFIM) under the assumption of independent and identically distributed (i.i.d) data with randomly missing entries, as well as its performance under the assumption that the covariate is functional, are the main areas of focus. For this model, the nearly almost complete uniform convergence and rate of convergence established. The rates of convergence highlight the critical part that the probability of concentration play in the law of the explanatory functional variable. Additionally, we establish the asymptotic normality of the derived estimators proposed under specific mild conditions, relying on standard assumptions in Functional Data Analysis (FDA) for the proofs. Finally, we explore the practical application of our findings in constructing confidence intervals for our estimators. The rates of convergence highlight the critical part that the probability of concentration play in the law of the explanatory functional variable.
|
2023
|
tom 27
|
nr 3
1-19
PL
Głównym celem przedstawionych w artykule badań jest oszacowanie kwantyla rozkładu warunkowego przy użyciu podejścia półparametrycznego w obecności losowo brakujących danych, gdzie zmienna predykcyjna należy do przestrzeni semimetrycznej. Założono strukturę pojedynczego indeksu, aby połączyć zmienną objaśniającą i zmienną odpowiedzi. Wstępnie zaproponowano estymator jądra dla funkcji rozkładu warunkowego, zakładając, że dane są losowo wybierane z procesu stacjonarnego z brakującymi danymi (MAR). Nakładając pewne ogólne warunki, ustalono jednolitą, prawie całkowitą zgodność modelu ze współczynnikami konwergencji.
EN
The primary goal of this research was to estimate the quantile of a conditional distribution using a semi-parametric approach in the presence of randomly missing data, where the predictor variable belongs to a semi-metric space. The authors assumed a single index structure to link the explanatory and response variable. First, a kernel estimator was proposed for the conditional distribution function, assuming that the data were selected from a stationary process with missing data at random (MAR). By imposing certain general conditions, the study established the model’s uniform almost complete consistencies with convergence rates.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.