Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Exogenous proteinase inhibitors are valuable and economically interesting protective biotechnological tools. We examined whether small proteinase inhibitors when fused to a selected target protein can protect the target from proteolytic degradation without simultaneously affecting the function and activity of the target domain. Two proteinase inhibitors were studied: a Kazal-type silk proteinase inhibitor (SPI2) from Galleria mellonella, and the Cucurbita maxima trypsin inhibitor I (CMTI I). Both inhibitors target serine proteinases, are small proteins with a compact structure stabilized by a network of disulfide bridges, and are expressed as free polypeptides in their natural surroundings. Four constructs were prepared: the gene for either of the inhibitors was ligated to the 5' end of the DNA encoding one or the other of two selected target proteins, the coat protein (CP) of Potato potyvirus Y or the Escherichia coli β-glucuronidase (GUS). CMTI I fused to the target proteins strongly hampered their functions. Moreover, the inhibitory activity of CMTI I was retained only when it was fused to the CP. In contrast, when fused to SPI2, specific features and functions of both target proteins were retained and the inhibitory activity of SPI2 was fully preserved. Measuring proteolysis in the presence or absence of either inhibitor, we demonstrated that proteinase inhibitors can protect target proteins used either free or as a fusion domain. Interestingly, their inhibitory efficiency was superior to that of a commercial inhibitor of serine proteinases, AEBSF.
EN
 Virus-coded VPg protein of Potato virus Y (PVY) does not have homologs apart from other VPgs. Since VPg is indispensable for the potyvirus life cycle, it appeared a good candidate for eliciting pathogen-derived resistance to PVY. Following agroinfection used to obtain PVY VPg-transgenic Arabidopsis thaliana plants, only few transgenic seeds were recovered giving rise to six transgenic plants that contained the VPg gene with the correct sequence. They generated VPg mRNA, but VPg protein was not detected. Some plants were immune to PVY infection suggesting post-transcriptional gene silencing. However, the likely PVY VPg toxicity exerted at an early stage of transformed seeds development precludes its use for engineering pathogen-derived resistance.
EN
 The majority of proteins are unable to translocate into the cell interior. Hence for peptide- and protein-based therapeutics a direct intracytoplasmic delivery with the aid of transducing agents is an attractive approach. We wanted to deliver to the cell interior a putatively cytotoxic protein VPg. Protein transduction was achieved in vitro with three different commercial products. However, in our hands, delivery of various control proteins without known deleterious effects, as well as of protein VPg, always induced cell death. Finally, we used a novel transducing peptide Wr-T, which was not toxic to cultured cells, even in a quite large range of concentrations. Most importantly, control protein delivered to cells in culture did not display any toxicity while VPg protein exerted a strong cytotoxic effect. These data show that results obtained with cell-penetrating agents should be interpreted with caution.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.