The control chart is a tool of statistical quality control, which is widely used in factories. The fulfillment of its basic assumptions ensures faultless assessing the monitored process. Infringements the assumptions of classical control charts can cause false signals in the case of a regulated process, either lack of signal or the signal delayed in time, when process is out-of-control. Incorrect assessment of the accuracy of the manufacturing process is of course the economic impact. In this paper, based on actual data an attempt to determine control limits for the manufacturing process of the distribution of the controlled characteristics, which is significantly different from a normal distribution, was taken. The result of this work is the method of determining the control limits based on the quantile of a random variable estimated by the kernel estimation. The article pays attention to the economic consequences of infringements the assumptions of classical control charts.
The quality control aiming to provide a desired level of quality of produced products, requires bearing significant expenses. The structure of expenditure spent on quality assurance, due to its multidimensional nature, should be known and constantly monitored in order to detect the changes taking place therein. In this paper a proposal for a method to verify the hypothesis about the stability of the cost structure is presented. The method applies a statistical testing procedure based on permutations. In the presented example the real data coming from the acceptance inspection carried out in factory in Silesia have been used.
The control chart is a tool of statistical quality control, which is widely used in production. The fulfillment of its basic assumptions, guarantees flawless assessment of correctness of the monitored process. The purpose of this paper is to pay attention to the need to verify the assumptions of the used method and the effects of its unauthorized use, in case of not meeting its assumptions. In this paper a method that uses a family of stable distributions to estimate the unknown probability density of monitored diagnostic variable, is proposed. The estimated density function is the basis for determining the control limits.
Plan odbiorczy jest procedurą rozstrzygania na podstawie próby losowo pobranej z większej partii o jakości w tej badanej partii. Kontrola odbiorcza prowadzona może być zarówno w oparciu o ocenę alternatywną, jak i w oparciu o ocenę właściwości liczbowych. Plan kontroli odbiorczej oparty na ocenie właściwości liczbowych zakłada, iż kontrolowana charakterystyka ma rozkład normalny. W artykule zostanie zaprezentowana procedura wyznaczania stałej k liczbowego planu odbiorczego o zadanej liczebności próbki i ryzyku producenta, w przypadku rozkładu kontrolowanej charakterystyki istotnie różnego od rozkładu normalnego. W artykule porównano proponowaną metodę z metodą klasyczną pod względem generowanych kosztów. Założono, iż w przypadku rozkładów istotnie różnych od rozkładu normalnego, proponowana metoda okaże się tańsza w stosowaniu.
EN
The acceptance sampling is the settlement procedure based on a sample randomly selected from a larger batch of quality in the controlled batch. The inspection can be run in case of variable assessment and attribute assessment. Variable sampling assumes that the parameter of quality characteristic follows the normal distribution. In paper will be presented the procedure of determining the acceptance constant k of acceptance sampling by set sample size and risk of the producer, in the case of distribution of a controlled characteristics significantly different from the normal distribution. In the article the proposed method with the classical method in terms of the generated costs, is compared. It was assumed that in the case of distributions significantly different from normal distribution, the proposed method proves to be cheaper in the application.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.