For $C^{1,1}$ domains we give exact asymptotics near the domain's boundary for the Green function and Martin kernel of the rotation invariant α-stable Lévy process. We also obtain a relative Fatou theorem for harmonic functions of the stable process.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We prove a fractional version of the Hardy-Sobolev-Maz'ya inequality for arbitrary domains and $L^{p}$ norms with p ≥ 2. This inequality combines the fractional Sobolev and the fractional Hardy inequality into a single inequality, while keeping the sharp constant in the Hardy inequality.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.