Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote An Innovative Drastic Metric for Ranking Similarity in Decision-Making Problems
100%
|
2023
|
tom Vol. 35
731--738
EN
In this paper, we propose a novel approach to distance measurement for rankings, introducing a new metric that exhibits exceptional properties. Our proposed distance metric is defined within the interval of 0 to 1, ensuring a compact and standardized representation. Importantly, we demonstrate that this distance metric satisfies all the essential criteria to be classified as a true metric. By adhering to properties such as non-negativity, identity of indiscernibles, symmetry, and the crucial triangle inequality, our proposed distance metric provides a robust and reliable approach for comparing rankings in a rigorous and mathematically sound manner. Finally, we compare our new metric with distances such as Hamming distance, Canberra distance, Bray-Curtis distance, Euclidean distance, Manhattan distance, and Chebyshev distance. By conducting simple experiments, we assess the performance and advantages of our proposed metric in comparison to these established distance measures. Through these comparisons, we demonstrate the superior properties and capabilities of our new drastic weighted similarity distance for accurately capturing the dissimilarities and similarities between rankings in the decision-making domain.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.