Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom [Z] 77, 1-2
97--117
EN
With constantly increasing ecological needs, it is necessary to look for suitable solutions aimed at purifying the water and soil environment. Synthetic zeolites, i.e. porous, ion-exchangeable, acid- and heat-resistant, sodium and calcium aluminosilicates, may be the answer to this demand. This paper presents the adsorption capabilities of two synthetic zeolites (Na-X, Na-P1) obtained via hydrothermal reaction of aqueous sodium hydroxide and high-carbon fly ash. For this purpose, the experiment was conducted with adsorbates from two groups: heavy metals (Pb(II), Zn(II)) and organic substances (polymer - poly(acrylic acid) (PAA), nonsteroidal anti-inflammatory drug – diclofenac (DCF)). Adsorption was carried out in single and mixed adsorbate systems (metal-metal; metal-organic substance; organic substance-organic substance). The adsorption capacity of the studied zeolites was determined relative to Pb(II), Zn(II) and DCF. Desorption processes were also carried out to illustrate the regeneration abilities of the examined porous materials. In addition, the structure of the electrical double layer was characterized using potentiometric titrations and electrophoretic mobility measurements. The highest adsorbed amounts of heavy metals in single systems are observed for Na-X, i.e. 322.1 mg/g Pb(II) and 332.5 mg/g of Zn(II). In the case of Na-P1 zeolite, these amounts were 332.9 mg/g and 103.6 mg/g for Pb(II) and Zn(II), respectively. In mixed adsorbate systems there is a decrease in heavy metal adsorption, after the addition of both another metal or organic substance. In the first case, the decrease is small - the adsorption of Pb(II) on Na-X drops to 309.36 mg/g. In contrast, in mixed systems in the presence of anionic organic substances, the decrease in the amount of adsorbed ions is much greater. In the presence of DCF, Pb(II) adsorption on Na-X decrease to 98.7 mg/g, whereas on Na-P1 to 99.7 mg/g. The main mechanisms of the adsorption process in such systems are: competition for the adsorbent's active sites and the formation of complexes between adsorbates of opposite ionic character. However, the addition of a heavy metal causes increase of the drug adsorption. In the case of Pb(II) ions, the amount of DCF adsorbed on Na-X increases from 6.68 mg/g to 12.86 mg/g, and a slight decrease is observed on Na-P1. On the other hand, in the presence of PAA, DCF adsorption on Na-X decreases to 5.86 mg/g. Moreover, the synthesized adsorbents can be successfully regenerated with hydrochloric acid (in the single and mixed systems containing heavy metals). The addition of Pb(II)/Zn(II) and PAA causes a decrease in the zeta potential of the examined zeolites, whereas the addition of DCF increases this parameter. In turn, the surface charge density decreases in the presence of each adsorbate. It was proved that both synthetic zeolites can be successfully used in soil and water purification processes in continuously improved procedures.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.