In the field of text mining, many novel feature extraction approaches have been propounded. The following research paper is based on a novel feature extraction algorithm. In this paper, to formulate this approach, a weighted graph mining has been used to ensure the effectiveness of the feature extraction and computational efficiency; only the most effective graphs representing the maximum number of triangles based on a predefined relational criterion have been considered. The proposed novel technique is an amalgamation of the relation between words surrounding an aspect of the product and the lexicon-based connection among those words, which creates a relational triangle. A maximum number of a triangle covering an element has been accounted as a prime feature. The proposed algorithm performs more than three times better than TF-IDF within a limited set of data in analysis based on domain-specific data.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.