We consider a dynamic frictionless contact problem for a viscoelastic material with damage. The contact is modeled with normal compliance condition. The adhesion of the contact surfaces is considered and is modeled with a surface variable, the bonding field, whose evolution is described by a first order differential equation. We establish a variational formulation for the problem and prove the existence and uniqueness of the solution. The proofs are based on the theory of evolution equations with monotone operators, a classical existence and uniqueness result for parabolic inequalities, and fixed point arguments.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We consider a mathematical model which describes the flow of a Bingham fluid with friction. We assume a stationary flow and we model the contact with damped response and a local version of Coulomb's law of friction.The problem leads to a quasi-variational inequality for the velocity field. We establish the existence of a weak solution and, under additional assumptions, its uniqueness. The proofs are based on a new result obtained in (Motreanu and Sofonea, 1999). We also establish the continuous dependence of the solution with respect to the contact conditions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.