Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Near-bottom fluxes and composition of suspended matter in the Pomeranian Bay
100%
EN
The quality and composition of suspended organic matter in near-bottom fluxes was determined at a mooring station (Odas Tonne) 20 km north-north-west of the Odra river mouth from June to December 1997. Salinity data and high concentrations of suspended matter near the bottom showed that the material entering the Pomeranian Bay from the Odra flood was recognisable for about three weeks. Vertical sediment fluxes, however, were low ~ 40 g m-2 d-1 compared to those measured later in the year ~ 60 g m-2 d-1. On the other hand, average molar CNP ratios in sediment trap material decreased from June to December 1997. These results may have been a combined effect of dilution and material transport in a layer close to the sediment surface. Fluff layers sampled at Odas Tonne in August 1997 contained a very high proportion of branched fatty acids of bacterial origin, indicating high rates of bacterial degradation. Long-chain fatty acids indicated an origin from higher terrestrial plants. The saturated fatty acid content was high in the surface sediment and the traps, increasing towards the top trap. The percentage composition of fatty acids indicated that the lowest trap was fed mainly by material from the underlying sediment. Low salinities, variability in molar ratios for major elements, higher than usual bacterial activities and detection of fatty acids characteristic of land plants during the June-August deployment show a relationship with the Odra flood of summer 1997.
EN
A GIS (Geographical Information System) based study on deposition in the North Sea-Baltic Sea transition area has been carried out. The study is based on (i) a digital bathymetry model, (ii) 93 available 210Pb / 137Cs sedimentation rate estimations, (iii) grain-size distributions, organic matter, C, N and P content of 64 top 1 cm sediment samples from the study area, and (iv) GIS-based modelling of resuspension potentials based on wind statistics. With the use of regression statistics on depth, resuspension potential and sediment characteristics, results are extrapolated area-wide from the 64 sampling positions. The area is divided into sediment types and classified as accumulation or erosion/transport bottoms. Model results show good agreement with existing maps of sediment distributions, indicating that the sediment distribution is governed to a large extent by wind-induced waves. Correlations of sediment types, their deposition rates and their N and P contents were used to estimate spatial deposition rates. In all, the yearly deposition in the study area amounts to 2.8 million tons of organic matter, 0.14 million tons of total nitrogen, and 0.035 million tons of total phosphorus. Correlations of sediment types and dry bulk densities were used to infer spatial inventories of organic matter and total nitrogen and phosphorus in the top 1 cm of the sediments. A total of 100 million tons of organic matter, 4 million tons of total nitrogen, and 0.019 million tons of total phosphorus are contained in the top 1 cm of the sediments in the study area. In general, the deep parts of the study area with low resuspension potentials act as sinks for the fine-grained sediments and their associated particulate nutrients.
EN
Bottom-mounted acoustic Doppler current profiler measurements indicate that the net transport of water (844 m3 s-1) in the Little Belt makes up only 6% of the total transport between the Baltic Sea and the North Sea. This is a smaller percentage than the 9% commonly found in the literature. Owing to barotropic and tidal currents the gross transport is 5 times larger. The net transport is directed towards the North Sea mainly in the top 32 m of the water column but towards the Baltic Sea it occurs in the lower 5 m of the water column. The resulting transport of phosphorus is strongly affected by vertical mixing in an area of hydraulic control in the narrow part of the Little Belt. Comparisons of phosphorus profiles in stratified waters and in the mixing area indicate a yearly entrainment of 15 tonnes P from the bottom water to the surface layer. This vertical transport of P forms part of an internal loop in the general transport between the Baltic Sea and the North Sea. Compared to the transport observed 15-16 years ago, the present net phosphorus transport of 163 tonnes yr-1 from the Baltic Sea through the Little Belt is substantially lower.
EN
Short sediment cores from the eastern Gotland Basin were investigated using a multi-proxy approach in order to reconstruct the environmental conditions of the area during the past 1000 years. Sediment data and facies were discussed in relation to hydrographic features (salinity, oxygen) and climate change. During the medieval warm period (MWP), from about 900 to 1250 AD, the hydrographic and environmental conditions were similar to those of the present time (modern warm period, since about 1850): a temporally stable halocline, caused by regular saline water inflows from the North Sea, prevents vertical mixing and leads to bottom water anoxia and the deposition of laminated, organic-rich sapropels. During the period from about 1250 to 1850, referred to as the cold phase (including the Little Ice Age), the environmental conditions of the central Baltic Sea were distinctly different: the lower salinity, resulting from reduced North Sea water inflows, allowed vertical convection of the water column and long-term stable ventilation of the sea bed (oxic stage). Both the productivity of the planktonic ecosystem as well as the preservation of organic matter in the sediments improved during the warm periods. The anthropogenic impact can be identified within the recent laminated sequence by a temporal reconstruction of pollutant deposition. Our findings imply a climate-change driven shift in the environmental conditions and the ecosystem of the Baltic from the north to the south and back to the north.
EN
Short sediment cores from the eastern Gotland Basin were investigated using a multi-proxy approach in order to reconstruct the environmental conditions of the area during the past 1000 years. Sediment data and facies were discussed in relation to hydrographic features (salinity, oxygen) and climate change. During the medieval warm period (MWP), from about 900 to 1250 AD, the hydrographic and environmental conditions were similar to those of the present time (modern warm period, since about 1850): a temporally stable halocline, caused by regular saline water inflows from the North Sea, prevents vertical mixing and leads to bottom water anoxia and the deposition of laminated, organic-rich sapropels. During the period from about 1250 to 1850, referred to as the cold phase (including the Little Ice Age), the environmental conditions of the central Baltic Sea were distinctly different: the lower salinity, resulting from reduced North Sea water inflows, allowed vertical convection of the water column and long-term stable ventilation of the sea bed (oxic stage). Both the productivity of the planktonic ecosystem as well as the preservation of organic matter in the sediments improved during the warm periods. The anthropogenic impact can be identified within the recent laminated sequence by a temporal reconstruction of pollutant deposition. Our findings imply a climate-change driven shift in the environmental conditions and the ecosystem of the Baltic from the north to the south and back to the north.
EN
A GIS (Geographical Information System) based study on deposition in the North Sea – Baltic Sea transition area has been carried out. The study is based on (i) a digital bathymetry model, (ii) 93 available 210Pb/137Cs sedimentation rate estimations, (iii) grain-size distributions, organic matter, C, N and P content of 64 top 1 cm sediment samples from the study area, and (iv) GIS-based modelling of resuspension potentials based on wind statistics. With the use of regression statistics on depth, resuspension potential and sediment characteristics, results are extrapolated area-wide from the 64 sampling positions. The area is divided into sediment types and classified as accumulation or erosion/transport bottoms. Model results show good agreement with existing maps of sediment distributions, indicating that the sediment distribution is governed to a large extent by windinduced waves. Correlations of sediment types, their deposition rates and their N and P contents were used to estimate spatial deposition rates. In all, the yearly deposition in the study area amounts to 2.8 million tons of organic matter, 0.14 million tons of total nitrogen, and 0.035 million tons of total phosphorus. Correlations of sediment types and dry bulk densities were used to infer spatial inventories of organic matter and total nitrogen and phosphorus in the top 1 cm of the sediments. A total of 100 million tons of organic matter, 4 million tons of total nitrogen, and 0.019 million tons of total phosphorus are contained in the top 1 cm of the sediments in the study area. In general, the deep parts of the study area with low resuspension potentials act as sinks for the fine-grained sediments and their associated particulate nutrients.
EN
Bottom-mounted acoustic Doppler current profiler measurements indicate that the net transport of water (844 m3 s−1) in the Little Belt makes up only 6% of the total transport between the Baltic Sea and the North Sea. This is a smaller percentage than the 9% commonly found in the literature. Owing to barotropic and tidal currents the gross transport is 5 times larger. The net transport is directed towards the North Sea mainly in the top 32 m of the water column but towards the Baltic Sea it occurs in the lower 5 m of the water column. The resulting transport of phosphorus is strongly affected by vertical mixing in an area of hydraulic control in the narrow part of the Little Belt. Comparisons of phosphorus profiles in stratified waters and in the mixing area indicate a yearly entrainment of 15 tonnes P from the bottom water to the surface layer. This vertical transport of P forms part of an internal loop in the general transport between the Baltic Sea and the North Sea. Compared to the transport observed 15–16 years ago, the present net phosphorus transport of 163 tonnes yr−1 from the Baltic Sea through the Little Belt is substantially lower.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.