Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Groundwater is a vital resource that provides drinking water to over half of the world's population. However, groundwater contamination has become a serious issue due to human activities such as industrialization, agriculture, and improper waste disposal. The impacts of groundwater contamination can be severe, including health risks, environmental damage, and economic losses. A list of unknown groundwater contamination sources has been developed for the Wang-Tien landfill using a groundwater modeling system (GMS). Further, AI-based models have been developed which accurately predict the contamination from the sources at this site. A serious complication with most previous studies using artificial neural networks (ANN) for contamination source identification has been the large size of the neural networks. We have designed the ANN models which use three different ways of presenting inputs that are categorized by hierarchical K-means clustering. Such an implementation reduces the overall complexity of the model along with high accuracy. The predictive capability of developed models was assessed using performance indices and compared with the ANN models. The results show that the hybrid model of hierarchical K-means clustering and ANN model (HCA-ANN) is a highly accurate model for identifying pollution sources in contaminated water.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.