Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Clustering in fuzzy subspaces
100%
EN
Some data sets contain data clusters not in all dimension, but in subspaces. Known algorithms select attributes and identify clusters in subspaces. The paper presents a novel algorithm for subspace fuzzy clustering. Each data example has fuzzy membership to the cluster. Each cluster is defined in a certain subspace, but the the membership of the descriptors of the cluster to the subspace (called descriptor weight) is fuzzy (from interval [0; 1]) - the descriptors of the cluster can have partial membership to a subspace the cluster is defined in. Thus the clusters are fuzzy defined in their subspaces. The clusters are defined by their centre, fuzziness and weights of descriptors. The clustering algorithm is based on minimizing of criterion function. The paper is accompanied by the experimental results of clustering. This approach can be used for partition of input domain in extraction rule base for neuro-fuzzy systems.
PL
Niektóre dane zawierają grupy danych nie we wszystkich wymiarach, ale w pewnych podprzestrzeniach dziedziny. Artykuł przedstawia algorytm grupowania danych w rozmytych podprzestrzeniach. Każdy przykład danych ma pewną rozmytą przynależność do grupy (klastra). Każdy klaster z kolei jest rozpięty w pewnej podprzestrzeni dziedziny wejściowej. Klastry mogą być rozpięte w różnych podprzestrzeniach. Algorytm grupowania oparty jest na minimalizacji funkcji kryterialnej. W wyniku jego działania wypracowane są położenia klastrów, ich rozmycie i wagi ich deskryptorów. Przestawiono także wyniki eksperymentów grupowania danych syntetycznych i rzeczywistych
EN
The correspondence between support vector machines and neuro-fuzzy systems is very interesting. The full equivalence for classification and partial for regression has been formally shown. The equivalence has very interesting implication. It is a base for a new method of initialization of neurofuzzy systems, ie. for creating of fuzzy rule base. The commonly used methods are based on reversion of item: the premises of fuzzy rules split input domain into region, thus premises of fuzzy rules can be elaborated by partition of input domain. This leads to three main classes of partition of input domain. The above mentioned equivalence results in new way of creating the rule base. Now the input domain is not partitioned, but the premises of fuzzy rules are extracted from support vector. The objective of the paper is to examine the advantages and disadvantages of this new method for creation of fuzzy rule bases for neuro-fuzzy systems.
PL
Związek pomiedzy maszynami wektorów podpierajacych i systemami neuronoworozmytymi jest bardzo interesujący. Została wykazana pełna odpowiedniość między tymi systemami dla klasyfikacji i częściowa dla regresji. Odpowiedność ta ma bardzo ważną konsekwencję. Jest podstawa do opracowania nowego sposobu tworzenia bazy reguł dla systemu neuronowo-rozmytego. Dotychczasowe metody opieraja się na podziale przestrzeni wejściowej, a następnie przekształcenia tak powstałych regionów w przesłanki rozmytych reguł. Tutaj możliwe jest przekształcanie wektorów wspierających na przesłanki reguł rozmytych. Celem artykułu jest przebadanie możliwości stosowania takiego podejścia do inicjalizacji systemów neuronowo-rozmytych. Eksperymenty wykazują dosć istotną wadę tego podejścia. W jego wyniku powstają bardzo liczne zbiory reguł rozmytych, co zupełnie przeczy idei interpretowalności wiedzy w systemach neuronowo-rozmytych. Manipulacja pewnymi parametrami umożliwia zmiejszenie liczby reguł, jednak manipulacja ta jest trudna i wymaga wielu prób. Drugą dość istotna wadą jest wyraźnie wyższy błąd wypracowywany przez systemy inicjalizowane przez SVM w porównaniu do systemów, których bazy reguł tworzone sa˛ poprzez podział przestrzeni wejściowej.
3
Content available remote Rule weights in a neuro-fuzzy system with a hierarchical domain partition
100%
EN
The paper discusses the problem of rule weight tuning in neuro-fuzzy systems with parameterized consequences in which rule weights and the activation of the rules are not interchangeable. Some heuristic methods of rule weight computation in neuro-fuzzy systems with a hierarchical input domain partition and parameterized consequences are proposed. Several heuristics with experimental results showing the advantage of their usage are presented.
4
Content available remote Clustering with Missing Values
100%
EN
The paper presents the clustering algorithm for data with missing values. In this approach both marginalisation and imputation are applied. The result of the clustering is the type-2 fuzzy set / rough fuzzy set. This approach enables the distinction between original and imputed data. The method can be applied to the data sets with all attributes lacking some values. The paper is accompanied by the numerical examples of clustering of synthetic and real-life data sets.
EN
Real life data sets often suffer from missing data. The neuro-rough-fuzzy systems proposed hitherto often cannot handle such situations. The paper presents a neuro-fuzzy system for data sets with missing values. The proposed solution is a complete neuro-fuzzy system. The system creates a rough fuzzy model from presented data (both full and with missing values) and is able to elaborate the answer for full and missing data examples. The paper also describes the dedicated clustering algorithm. The paper is accompanied by results of numerical experiments.
6
Content available Merging of fuzzy models for neuro-fuzzy systems
100%
EN
The merging of fuzzy model is widely used for reduction of rule number in fuzzy model. The supernumerosity of rules is mainly caused by grid partition of input domain. In the paper different cause for model merging is described. It is the need for creation of fuzzy model for large data set. In our solution the models are build basing data subset and then the submodels are merged into one. This approach enables quicker elaboration of submodels with relatively good knowledge generalisation ability without waiting for the whole data set to be processed. With passing time, the subsequent submodels are created and merged to create the better model.
PL
Artykuł opisuje scalanie modeli rozmytych w systemach neuronowo-rozmytych wykorzystywane przy tworzeniu modeli dla dużych zbiorów danych. Nieraz zbiory danych są tak duże, że nie jest możliwe wypracowanie modelu od razu dla całego zbioru. Tworzy się zatem modele dla podzbiorów zbioru danych. Uzyskane w ten sposób modele są następnie scalane, by wypracować jeden model. Podejście to jest także korzystne, gdy wszystkie dane nie są dostępne, ale są dostarczane partiami. Wtedy wstępny model jest wypracowany zanim wszystkie dane zostaną dostarczone do systemu. Artykuł przedstawia sposób wyznaczania podobieństwa reguł w modelu rozmytym oraz opisuje system neuronowo-rozmyty budujący i scalający modele wypracowane dla podzbiorów.
EN
The paper presents the method of hierarchical domain partition in fuzzy inference system with parameterized consequences. The novelty of the solution is the partition based on fuzzy clustering. The experimental results on the synthetic and real life data set are also presented.
PL
Artykuł przedstawia metodę hierarchicznego podziału dziedziny w systemie neuronowo-rozmytym. Nowością jest zastosowanie grupowania rozmytego do uzyskania podziału. Zaprezentowane także zostały wyniki eksperymentów zarówno na syntetycznych, jak i na rzeczywistych zbiorach danych.
EN
Real-life data sets sometimes miss some values. The incomplete data needs specialized algorithms or preprocessing that allows the use of the algorithms for complete data. The paper presents a comparison of various techniques for handling incomplete data in the neuro-fuzzy system ANNBFIS. The crucial procedure in the creation of a fuzzy model for the neuro-fuzzy system is the partition of the input domain. The most popular approach (also used in the ANNBFIS) is clustering. The analyzed approaches for clustering incomplete data are: preprocessing (marginalization and imputation) and specialized clustering algorithms (PDS, IFCM, OCS, NPS). The objective of our research is the comparison of the preprocessing techniques and specialized clustering algorithms to find the the most-advantageous technique for handling incomplete data with a neuro-fuzzy system. This approach is also the indirect validation of clustering.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.