Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Three ex situ pore water sampling procedures (I – rhizon samplers, II – centrifugation of sediment subsamples collected from different sediment depths without core sectioning, III – core sectioning and centrifugation of sediment sections) were compared to indicate factors that may affect concentrations of pore water constituents (ammonia and sulfides). The methods were selected and modified in such a way as to determine how the concentrations are affected by different factors related to sampling procedures, e.g. contact with atmospheric air, filtration and sediment core disturbance. They were tested on nine sediment cores collected at one site in the southern Baltic Sea. The concentration of ammonia in pore water from centrifuged sediment sections was significantly higher compared to pore water extracted by rhizons – probably due to the impact of changing pH. The factor with the greatest impact on the H2S/HS– concentration in the analyzed pore water was the contact with atmospheric air and/or the extrusion of sediments from a core liner. Rhizons proved to be the best option for sampling pore waters analyzed for H2S/HS– and NH4+/NH3. In the case of H2S/HS– we noticed the smallest loss of the analyzed constituents. For ammonia, the centrifugation of the whole sediment sections was likely to cause interferences in the indophenol blue method.
EN
In this study, Baltic Sea sediments, as a source of dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), ammonium (NH4+), and phosphates (PO43-), were investigated based on samples obtained in 2017 and 2018, shortly after a sequence of inflows from the North Sea that occurred between 2014 and 2017. Two different data sets (I and II) were used to assess benthic diffusive fluxes and thus elucidate both the temporal conditions at the time of sampling (data set I) and the diffusion potential of the sediments (data set II). The estimated fluxes were characterized by a high spatial variability within the whole Baltic Sea and ranged between −0.01 and 3.33 mmol m−2 d−1 for DIC, −0.02 and 0.44 mmol m−2 d−1 for DOC, −40.5 and 1370.1 µmol m−2 d−1 for NH4+, and −5.9 and 60.9 µmol m−2 d−1 for PO43-. The estimated benthic diffusive fluxes indicated a high potential for DIC, DOC, NH4+, and PO43- release from Baltic Sea sediments. The high O2 concentrations in the water column of the Gulf of Bothnia together with major Baltic inflows (MBIs) bringing oxygenated seawater to the Baltic Proper and to some extent the Eastern Gotland Basin regulate the amounts of chemicals released from the sediment. Our study showed that a sequence of inflows has greater impact on the diminution of diffusive fluxes than does a single MBI and that the sediments of the Baltic Proper, even under the influence of inflows, are an important source of C, N, and P (159 kt yr−1 for DIC+DOC, 6.3 kt yr−1 for N- NH4+ and 3.7 kt yr−1 for P-PO43-) that should be considered in regional budget estimations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.