The prior information constrained impedance inversion is an important tool to improve the inversion effect. With the traditional constrained prior information extracted from logging data by the analytic formula, it is difficult to accurately describe the information of a complex reservoir. In addition, the traditional inversion method is trace-by-trace, which ignores the lateral information contained in seismic data. This paper presents a multichannel seismic impedance inversion method combining logging and seismic. In this method, the dictionary learning method is used to extract the vertical prior information of the formation from the logging data. At the same time, we can learn the dip information from seismic data cube. Under the framework of multichannel inversion, regularization and sparse representation technology are used to simultaneously add the vertical and the transverse distribution prior information into the inversion process. Block coordinate descent method is used to solve the multichannel inversion problem, making the seismic inversion efficient. This method excavates the spatial prior information in a data-driven way and is used for constrained inversion, avoiding the false prior cognition caused by manual interpretation. Through the model and field data testing, it is verified that this method is effective.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.