Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Safety of use of the buildings refers i.a. to ensuring appropriate hygienic and sanitary conditions and also health conditions. According to the EU Directive on the energy performance of buildings, there is a need to define the conditions for the classification of objects in terms of indoor microclimate requirements. Evaluating the quality of the interior environment in buildings and specifying the requirements of people staying in them, first of all the values of thermal microclimate parameters and air quality should be taken into account. Long-term influence of disadvantageous of environmental conditions may cause or exacerbate many symptoms associated with abnormal functioning of the organism and lead to the weakness or illness. This phenomenon is called sick building syndrome, and the symptoms of the syndrome such as eyes and respiratory tract irritation, malaise, dizziness and headache or fatigue are linked to time spent in the building. The article presents the results of research on the condition of the interior environment in educational buildings, identifies factors affecting the formation of environmental conditions in the rooms and shows the influence of the interiors environment in buildings on the human body. The relationships between the basic parameters of the interior microclimate and the state of feeling satisfaction with the environmental conditions that surrounds the human are tracked. It was found that in many cases commonly used gravitational ventilation is not able to ensure the proper conditions of the interior microclimate, and the concentrations of carbon dioxide recorded in the tested rooms exceeded the applicable standards.
2
80%
EN
The main aim of this paper is to present the results of the influence comparison of biocides on hot water polypropylene pipes as a part of a longtime investigation on the sustainable and safety of buildings. There are a lot of guidelines that have linked water distribution systems as an infection source and methods on how to eliminate Legionella from water systems. The presence of bacteria in the technical systems of buildings causes contamination, which may be very dangerous if there are good conditions for multiplication. The basic point is the occurrence of biofilms on the walls of distribution pipes as well as material impact. The investigation in the targeted hospital brings together interesting results from a combination of technical solutions and the dosing of biocides and their effect on the inner surface of pipes.
PL
Głównym celem pracy jest przedstawienie wyników badań porównawczych wpływu biocydów na rury polipropylenowe używane do transportu gorącej wody. Badania przeprowadzono podczas długoletniego projektu, który polegał na określeniu zrównoważenia i bezpieczeństwa budynków. Istnieje wiele opracowań, które traktują systemy dystrybucji wody jako źródło infekcji, przedstawiając jednocześnie metody eliminacji Legionelli z systemów wodnych. Obecność bakterii w systemach technicznych budynków powoduje zanieczyszczenie, które może być bardzo niebezpieczne, jeśli występują dobre warunki do namnażania. Główną przyczyną namnażania jest występowanie biofilmów na ścianach rur, a także wpływ materiału. Badania w wybranym szpitalu pozwoliły uzyskać interesujące rezultaty wpływu na wewnętrzną powierzchnię rur przy zastosowaniu połączenia rozwiązań technicznych oraz dozowania biocydów.
EN
Since anaerobic digestion (AD) is the preferred procedure for sludge treatment and disposal, it is constrained by the hydrolysis and acidogenesis stages. Nanomaterials have an impact on the AD process due to their unique properties (large specific surface areas, solubility, adsorption reduction of heavy metals, degradation of organic matter, reduction of hydrogen supplied and catalytic nature) which make them advantageous in many applications due to their effectiveness in improving the AD efficiency. Magnetic Nanoparticles (MNPs) were used in the present study to improve the biogas production. The experiments were divided into two stages to evaluate the effect of adding MNPs to two types of sewage sludge (SS): attached growth process (AG) and activated sludge (AS). The first stage consists of 15 tests divided into three experiments (A, B, and C). Doses of MNPs (20, 50, 100, 200) mg/l were added to all digesters in the same experiment except for one digester (the control). Experiments A, B and C achieved the highest biogas production when 100 mg/l of MNPs was added. They were 1.9, 1.93 and 2.07 times higher than the control for A, B and C respectively. The second stage consists of 12 tests with a pretreatment for some of SS. It was divided into two experiments (D, E), where the chemical pretreatment was applied to experiment D and the thermal pretreatment was applied to experiment E except for the control. For digester D4, which had 100 mg/l of MNPs after a chemical pretreatment at pH = 12, the biogas production increased by 2.2 times higher than the control (D0) and 1.5 times higher than the untreated sludge with the addition of 100 mg/l MNPs (DN). Thermal pretreatment at 100 °C with addition of 100 mg/l MNPs (E4) achieved a biogas yield 2 times higher than the control (E0), and 1.39 times higher than untreated sludge with 100 mg/l MNPs (EN). The previous results indicate that the integration of magnetite can serve as the conductive materials, promoting inherent indirect electron transfer (IET) and direct interspecies electron transfer (DIET) between methanogens and fermentative bacteria which lead to a more energy-efficient route for interspecies electron transfer and methane productivity. This study demonstrated the positive effect of magnetite on organic biodegradation, process stability and methane productivity.
EN
Emission of harmful substances into the atmosphere resulting from the combustion of fuels in the energy production process and road traffic intensity are a key determinants of poor air quality in cities and the creation of an unfriendly environment for people to live in, which has a significant impact on their safety and health. The first step to reducing emissions is to reduce energy consumption. The ecological effect resulting from the thermal modernization of existing residential building stock was estimated. Nature-based solutions were proposed to compensate for the lost green areas in favor of gray infrastructure in the form of green roofs and walls. The possibility of improving environmental conditions by introducing this type of solutions into the urban tissue was assessed. Depending on the type of vegetation, one m2 of green cover is able to absorb an average of 2.3 kg of CO2 and 0.2 kg of particulate matter from the air per year. Renewable energy sources are an important element of green buildings. Heat pump may be the most advantageous solution in minimizing emissions combined with low operating costs. Obtaining energy from geothermal sources would be equally beneficial in terms of reducing emissions, but there are risks changes in groundwater levels or soil damage. Solar energy is one of the leading renewable energy sources, especially in hot water installations, where it is possible to reduce energy consumption by up to 50%.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.