Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Early-stage and advanced breast cancer represent distinct disease processes. Thus, identifying the stage of tumor is a crucial procedure for optimizing treatment efficiency. Breast thermography has demonstrated significant advancements in non-invasive tumor detection. However, the accurate determination of tumor stage based on temperature distribution represents a challenging task, primarily due to the scarcity of thermal images labeled with the stage of tumor. This work proposes a transfer learning approach based on Deep Convolutional Neural Network (DCNN) with thermal images for predicting breast tumor stage. Various tumor stage scenarios including early and advanced tumors are embedded in a 3D breast model using the Finite Element Method (FEM) available on COMSOL Multiphysics software. This allows the generation of the thermal image dataset for training the DCNN model. A detailed investigation of the hyperparameters tuning process has been conducted to select the optimal predictive model. Thus, various evaluation metrics, including accuracy, sensitivity, and specificity, are computed using the confusion matrix. The results demonstrate the DCNN model's ability to accurately predict breast tumor stage from thermographic images, with an accuracy of 98.2%, a sensitivity of 98.8%, and a specificity of 97.7%. This study indicates the promising potential of thermographic images in enhancing deep learning algorithms for the non-invasive prediction of breast tumor stage.
PL
Wczesny i zaawansowany rak piersi stanowią odrębne procesy chorobowe. Dlatego też identyfikacja stadium nowotworu jest kluczową procedurą dla optymalizacji skuteczności leczenia. Termografia piersi wykazała znaczny postęp w nieinwazyjnym wykrywaniu nowotworów. Jednak dokładne określenie stopnia zaawansowania nowotworu na podstawie rozkładu temperatury stanowi trudne zadanie, głównie ze względu na niedobór obrazów termicznych oznaczonych stopniem zaawansowania nowotworu. W niniejszej pracy zaproponowano podejście uczenia transferowego oparte na głębokiej konwolucyjnej sieci neuronowej (DCNN) z obrazami termicznymi do przewidywania stadium guza piersi. Różne scenariusze stadium nowotworu, w tym guzy wczesne i zaawansowane, są osadzone w trójwymiarowym modelu piersi przy użyciu metody elementów skończonych (MES) dostępnej w oprogramowaniu COMSOL Multiphysics. Pozwala to na wygenerowanie zestawu danych obrazów termicznych do trenowania modelu DCNN. Przeprowadzono szczegółowe badanie procesu dostrajania hiperparametrów w celu wybrania optymalnego modelu predykcyjnego. W związku z tym różne wskaźniki oceny, w tym dokładność, czułość i swoistość, są obliczane przy użyciu macierzy pomyłek. Wyniki pokazują zdolność modelu DCNN do dokładnego przewidywania stadium guza piersi na podstawie obrazów termograficznych, z dokładnością 98,2%, czułością 98,8% i swoistością 97,7%. Badanie to wskazuje na obiecujący potencjał obrazów termograficznych w ulepszaniu algorytmów głębokiego uczenia się w celu nieinwazyjnego przewidywania stadium guza piersi.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.