We investigate some geometrical properties of squares of special Sierpiński sets. In particular, we prove that (under CH) there exists a Sierpiński set S and a function p: S → S such that the images of the graph of this function under π'(⟨x,y⟩) = x - y and π''(⟨x,y⟩) = x + y are both Lusin sets.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We show that under the axiom $CPA_{cube}$ there is no uniformly completely Ramsey null set of size $2^{ω}$. In particular, this holds in the iterated perfect set model. This answers a question of U. Darji.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We prove that the Ellentuck, Hechler and dual Ellentuck topologies are perfect isomorphic to one another. This shows that the structure of perfect sets in all these spaces is the same. We prove this by finding homeomorphic embeddings of one space into a perfect subset of another. We prove also that the space corresponding to eventually different forcing cannot contain a perfect subset homeomorphic to any of the spaces above.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A function f: ℝ → {0,1} is weakly symmetric (resp. weakly symmetrically continuous) at x ∈ ℝ provided there is a sequence hₙ → 0 such that f(x+hₙ) = f(x-hₙ) = f(x) (resp. f(x+hₙ) = f(x-hₙ)) for every n. We characterize the sets S(f) of all points at which f fails to be weakly symmetrically continuous and show that f must be weakly symmetric at some x ∈ ℝ∖S(f). In particular, there is no f: ℝ → {0,1} which is nowhere weakly symmetric. It is also shown that if at each point x we ignore some countable set from which we can choose the sequence hₙ, then there exists a function f: ℝ → {0,1} which is nowhere weakly symmetric in this weaker sense if and only if the continuum hypothesis holds.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.