Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom Vol. 16, no. 4
554--558
EN
In the paper author proposed an original approach for detection and localization of faults occurring in Direct Current machine. A system for diagnosing DC machines was described. The system performed an analysis of the acoustic signals of DC machine. Researches were conducted for two states of Direct Current machines. The studies were conducted for the algorithms of data processing: Symlet wavelet transform and modified classifier based on words. A pattern creation process has been carried out for the 10 sound samples. An identification process has been carried out for the 40 sound samples. The described implementation of the system may be useful for protecting machines. Moreover, this approach will reduce the cost of maintenance and the number of damaged machines.
PL
W pracy autor zaproponował oryginalne podejście do wykrywania, lokalizacji usterek występujących w maszynie prądu stałego. Opisano implementację systemu do diagnostyki maszyn prądu stałego. System przeprowadzał analizę sygnałów akustycznych maszyny prądu stałego. Przeprowadzono badania dla dwóch stanów maszyny prądu stałego. Badania zostały przeprowadzone dla algorytmów przetwarzania danych: Transformacji falkowej Symlet i zmodyfikowanego klasyfikatora opartego na słowach. Proces tworzenia wzorca do rozpoznawania został przeprowadzony dla 10 próbek dźwięku. Proces identyfikacji został przeprowadzony dla 40 próbek dźwięku. Opisana implementacja systemu może być przydatna do ochrony maszyn. Ponadto podejście takie pozwoli zmniejszyć koszty utrzymania i liczbę uszkodzonych maszyn.
|
|
tom Vol. 39, No. 2
189--194
EN
In industrial processes electrical motors are serviced after a specific number of hours, even if there is a need for service. This led to the development of early fault diagnostic methods. Paper presents early fault diagnostic method of synchronous motor. This method uses acoustic signals generated by synchronous motor. Plan of study of acoustic signal of synchronous motor was proposed. Two conditions of synchronous motor were analyzed. Studies were carried out for methods of data processing: Line Spectral Frequencies and K-Nearest Neighbor classifier with Minkowski distance. Condition monitoring is useful to protect electric motors and mining equipment. In the future, these studies can be used in other electrical devices.
EN
In this paper, non-invasive method of recognition of finger skin was proposed. A plan of study of images of finger skin was proposed. Researches were carried out for three kinds of images: 60 h after injury, 160 h after injury, 450 h after injury. Proposed technique of recognition used methods of signal processing: extraction of magenta color, calculation of histogram, image filtration, calculation of perimeter, and K-NN classifier. A pattern creation process was conducted using 15 training images of finger skin. In the identification process 60 test images were used. The advantage of the presented method is analysis of the finger skin using a smartphone. The proposed approach will help to diagnose pathologies of human skin.
EN
A degradation of metallurgical equipment is normal process depended on time. Some factors such as: operation process, friction, high temperature can accelerate the degradation process of metallurgical equipment. In this paper the authors analyzed three phase induction motors. These motors are common used in the metallurgy industry, for example in conveyor belt. The diagnostics of such motors is essential. An early detection of faults prevents financial loss and downtimes. The authors proposed a technique of fault diagnosis based on recognition of currents. The authors analyzed 4 states of three phase induction motor: healthy three phase induction motor, three phase induction motor with 1 faulty rotor bar, three phase induction motor with 2 faulty rotor bars, three phase induction motor with faulty ring of squirrel-cage. An analysis was carried out for original method of feature extraction called MSAF-RATIO15 (Method of Selection of Amplitudes of Frequencies – Ratio 15% of maximum of amplitude). A classification of feature vectors was performed by Bayes classifier, Linear Discriminant Analysis (LDA) and Nearest Neighbour classifier. The proposed technique of fault diagnosis can be used for protection of three phase induction motors and other rotating electrical machines. In the near future the authors will analyze other motors and faults. There is also idea to use thermal, acoustic, electrical, vibration signal together.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.