Let $𝓡_{s}$ be the family of open rectangles in the plane ℝ² with a side of angle s to the x-axis. We say that a set S of directions is an R-set if there exists a function f ∈ L¹(ℝ²) such that the basis $𝓡_{s}$ differentiates the integral of f if s ∉ S, and $D̅_{s}f(x) = lim sup_{diam(R)→0, x∈R∈𝓡_{s}} |R|^{-1} ∫_{R} f = ∞$ almost everywhere if s ∈ S. If the condition $D̅_{s}f(x) = ∞$ holds on a set of positive measure (instead of a.e.) we say that S is a WR-set. It is proved that S is an R-set (resp. a WR-set) if and only if it is a $G_{δ}$ (resp. a $G_{δσ}$).
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We consider sequences of linear operators Uₙ with a localization property. It is proved that for any set E of measure zero there exists a set G for which $Uₙ𝕀_{G}(x)$ diverges at each point x ∈ E. This result is a generalization of analogous theorems known for the Fourier sum operators with respect to different orthogonal systems.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.