Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Optics in Croke-Kleiner Spaces
100%
|
|
tom 58
|
nr 2
147-165
EN
We explore the interior geometry of the CAT(0) spaces ${X_{α}: 0 < α ≤ π/2}$, constructed by Croke and Kleiner [Topology 39 (2000)]. In particular, we describe a diffraction effect experienced by the family of geodesic rays that emanate from a basepoint and pass through a certain singular point called a triple point, and we describe the shadow this family casts on the boundary. This diffraction effect is codified in the Transformation Rules stated in Section 3 of this paper. The Transformation Rules have various applications. The earliest of these, described in Section 4, establishes a topological invariant of the boundaries of all the $X_{α}$'s for which α lies in the interval [π/2(n+1),π/2n), where n is a positive integer. Since the invariant changes when n changes, it provides a partition of the topological types of the boundaries of Croke-Kleiner spaces into a countable infinity of distinct classes. This countably infinite partition extends the original result of Croke and Kleiner which partitioned the topological types of the Croke-Kleiner boundaries into two distinct classes. After this countably infinite partition was proved, a finer partition of the topological types of the Croke-Kleiner boundaries into uncountably many distinct classes was established by the second author [J. Group Theory 8 (2005)], together with other applications of the Transformation Rules.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.