The effect of the reaction conditions (substrate concentration, enzyme dosage, and pH) on cyclodextrin production by cyclodextrin glucanotransferase from Bacillus megaterium was investigated by applying mathematical modeling methods. Adequate models were developed and they were used for determination of the optimal conditions for maximal formation of β-cyclodextrins at minimal concentrations of α- and γ-cyclodextrins. The main factor affecting the ratio of the products was pH of the reaction mixture. At pH 9 the enzyme formed mainly β- and γ-cyclodextrins and the ratio α:β:γ was 2.6:83.5:13.9; at pH 5 the ratio changed to 8.6:84.6:6.8. Mathematical models were used for determination of the conditions for maximal conversion of the substrate into cyclodextrins. 45.88% conversion of starch was achieved at 5% substrate concentration, 3.5 U/g enzyme dosage, and pH 7.4.
The composition of a synthetic culture medium for levorin biosynthesis by Streptomyces levoris 99/23 was optimised using mathematical modelling methods. The optimal concentrations of the medium components were established by means of an optimum composition design at three factor variation levels. An adequate regression model was obtained. Levorin biosynthesis by Streptomyces levoris 99/23 in the optimised synthetic medium was over 38% higher than in the initial medium. The antibiotic biosynthesis dynamics in the optimised culture medium was studied by means of a non-linear differential equation system. The resultant model was valid.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.