Quartz, known as a common mineral on our planet, is used as a good marker of microstructural deformation created by tectonic activity or meteorite impact. Planar fractures (PFs) and planar deformation features (PDFs) are not randomly oriented in an impacted quartz crystal, but are distinctly connected to crystallographic planes. In a tectonically deformed quartz PDFs are mostly parallel to the plane (0001), but can also be bent. Recrystallization reduces the level of dislocations in such a quartz. However, the difference between both types of quartz is quantitative and not qualitative. One might expect that the impact could reactivate or induce new tectonic metamorphism and/or volcanic activity. In addition, P-T parameters decrease continuously from the impact centre toward outside. Then, intermediate forms of quartz deformation ought to be distinguished. The paper also presents the point of view that the location and identification of deformed and shocked quartz, as well as some allochtonic Scandinavian impactites, transported into the Central Europe during the last glaciation, is highly probable in areas of enhanced tectonic activity in Lower Silesia, Poland. Identification of local rocks with pseudotachylite properties and recognition of their nature, deformed versus shocked, could also be helpful here.
The complex Ilyinets crater is an example of the small impact structure formed in crystalline target rocks of the Ukrainian Shield. Its impactites are characterised by examples of metamorphosed gneisses, granites, fine-grained polymict breccia and suevites. In the breccia and suevite matrix, fluidal clasts present their earlier brecciation. Lobate contacts between quartz grains show recrystallisation by grain-boundary migration. Shock structures, PFs, PDFs and “ballen quartz” are not very frequent. The monomict suevite breccia was determined among impactites.
Suevite is the impact breccia rock with glass particles that attracts the attention of researches because of its broad variability. Many characteristics of the environment and impact process determine this attention, and, in consequence, various descriptions and names of the rock are presented in the literature. The Rochechouart impact structure is a good example of suevite or suevite-like rock diversity in its several localities (Rochechouart, Chassenon, LaValette, Montoume). The relationships between suevite components and target rocks can be exemplified by Kara and Popigai and other astroblemes. To simplify the classification of the rock, its main and more stable components (matrix, glass, clasts) should be considered. More detailed analysis of the suevite components can be used for sub-classifications, similarly as it is done for other Earth rocks. In addition, a short description of suevites from various astroblemes is presented. The possibility of the monomict suevite breccia creation is discussed.
Pseudotachylite is produced both during tectonic activity as well as by impact of a large celestial body. Special conditions of its petrogenesis and characteristics of host rocks determine the variability of pseudotachylite. This variability creates difficulties in its identification and classification as well as in determining the ways of its formation. The variable classifications require comparisons with other tectonic and impact rocks. The few non-obligatory characteristics of matrix and clasts differentiate tectonic and impact pseudotachylite. Both tectonic and impact activities create the final form of astrobleme. The rock was characterized on the basis of materials from Vredefort, Ries, Siljan, Dellen and some glacial erratics from Lower Silesia, SW Poland.
The multi-ring Popigai structure formed in the crystalline rocks of sub-polar Siberia is the largest one in the Asia territory. The complexity of its structure, the weak erosion and numerous, deep geological drillings determine its uniqueness when compared to the rocks found in Chicxulub, Vredefort and Sudbury. Shocked rocks, mainly gneisses, have fluidal texture, heavily brecciated garnets and opaque minerals. The presence of high- and low-temperature impact melt breccia types called tagamites have been described from the crater. Breccias of suevite express variability from low-glassy types to highly porous structures similar to tuffisites. The part of melts or glasses with vesicles, crystallites and clasts can be interpreted as pseudotachylite. Mineral globules and corroded clasts can be found in impactites. Feldspars are transformed into maskelynite, and quartz into lechatelierite. Sometimes quartz shows the ballen structure and has nebulous contacts. Graphite, ilmenite, and pyrite are dispersed in tagamites. The secondary mineralization of zeolites occurred in vesicles.
The complex Puchezh-Katunki (PK) structure was created in the area of the Vladimir-Vyatka dislocation zone on the crystalline basement of the East European platform. The crater ca 80 km in diameter is located north of the city Nizhny Novgorod and is covered by thick layers of Mesozoic sediments. Shocked rocks, mainly gneisses, have been described. Recrystallised feldspar-quartz melt is the most common component in specimens of impactites. The melt is preserved in the form of various clasts showing wavy nebulous contacts within the surrounding microcristalline or isotropic matrix. Planar deformation features (PDFs) were observed in the quartz grains, including toasted quartz. Their number ranges from one to three. The PDF lines are limited to the grain boundaries or cross them. A few ‘kinky’ cracks have been noted in the biotite plates. Lobate inter-grain contacts prove that quartz is recrystallised by grain-boundary migration. The recrystallized quartz also occurs in the form of ballen quartz and trydimite. Both types of quartz are numerous in the material under study. Tridymite tiles show patchy extinction. Various matrices formed from rock melts are microcrystalline (clay minerals) and contain fragments of isotropic glass, also in the form of spherules. In matrix, some clasts are in the form of the ballen quartz, sometimes with relics of PDFs. Matrices of recrystallized rock melts are characterised by different colours, number of clasts and are distinctly separated from each other. The melts during the impact process are immiscible. Secondary mineralization is more frequent in the rock melts and less frequent in the metamorphosed gneisses. Magnetite, pyrite and zeolites are the most common secondary minerals.
The Janisjarvi impact structure is located on the northern edge of Ladoga Lake, in Karelia, Russia. This research was carried out to study the biotite-quartz-feldspar-garnet-staurolite schist and several impact-metamorphosed rocks. In schist, biotite inclusions in garnet, pleochroic fields in biotite and asymmetry in the staurolite-biotite contact were observed. These characteristics were related to regional metamorphism of the target rock, and impact-induced features were not detected. No ‘kinky’ bands were observed in biotite. Fluidal structures and undulose extinction were rare in the analysed specimens. Injections of the tagamite melt into the clasts of cataclased recrystallising glass were noted. Fine-grained grey impact rock was cemented by a glassy micro-net with specimens of recrystallising quartz paramorphosis. In most of the analysed impactites, isotropic spherules and ‘ballen quartz’ structures, as well as sets of PDF (planar deformation features) and PF (planar fractures) in tagamite and quartz paramorphosis specimens were recognised. Except in schist, dynamic recrystallisation by ‘boundary migration’ was common. Secondary mineralisations were found for iron oxides, chlorite and calcite.
PL
Struktura uderzeniowa Janisjarvi znajduje się na północnym skraju jeziora Ładoga w rosyjskiej Karelii. Analizowano łupek typu biotyt-kwarc-skaleń-granat-staurolit ze skał podłoża struktury oraz kilka skał poddanych metamorfozie uderzeniowej. W łupku odkryto inkluzje biotytowe w granacie, pola pleochroiczne w biotycie i asymetrię kontaktu staurolit-biotyt. W biotycie nie zaobserwowano pasm typu ‘kinky’. Struktury fluidalne i faliste wygaszanie światła były rzadkie w analizowanych okazach. Odnotowano injekcje stopu tagamitu w klasty skataklazowanego rekrystalizującego szkliwa. Okaz rekrystalizującej paramorfozy kwarcu był scementowany z drobnoziarnistą skałą impaktową mikrosiecią szkliwa. W większości analizowanych impaktytów rozpoznano izotropowe sferule i struktury ’kwarcu groniastego’, a w tagamicie i paramorfozach kwarcu także od jednego do trzech zestawów lameli deformacji planarnych (PDF) oraz spękania planarne (PF). Spękania planarne były znacznie rzadsze niż deformacje i powstawały w stadium postimpaktu. Z wyjątkiem łupku, dynamiczna rekrystalizacja poprzez „migrację falistych granic ziarn” była powszechna. Stwierdzono wtórne mineralizacje tlenków żelaza, chlorytu i kalcytu.
The variable UV-fluorescence of minerals is well known, and this is attributed to some defects in crystallographic structure or some admixtures, e.g. REE elements. So far, UV-fluorescence has not been applied to describe the nature of meteorites. The plates of forty-five meteorites were examined in three simultaneous emission spectra under an epi-fluorescence microscope. Meteorites were characterized quantitatively according to twelve colours of fluorescence, arbitrarily identified. A numerical method of non-metric multidimensional scaling was used to put colour characteristics as well as the meteorites into an ordination space. Each colour characteristic carries its own information independent of the others. NWA 4039, Bilanga, Gujba and NWA 5437 are extremes in the ordination space. Sahara 560 and NWA 791 expressed very poor and very rich fluorescence, respectively. UV-fluorescence can be a good screening method to quickly distinguish space minerals with crystallographic defects and/or those which are contaminated by REE elements. In subsequent research, other more advanced methods will have to be used.
The Terny structure is an example of the highly denuded astrobleme, formed in crystalline target rocks of the Ukrainian Shield. Primarily, its impactites were discovered in two mines of iron ore, Pervomaysk and Annovsk, established in jaspilite and magnetite deposits. The Terny impactites are characterised by examples of various breccias, including a ferrugineous one and suevite, and melt rock (tagamite). Quartz of low birefringence, multidirectional PDFs in quartz, isotropic glassy quartz and glass globules evidence an impact influence on rocks. Clasts of melt/glassy quartz were partly brecciated or changed into clay minerals. Clasts of metamorphosed rocks in matrix of breccia are angular or rounded. Their sharp or diffuse contacts with matrix prove the influence of a unidirectional factor on the formation of breccia.
The paper presents an overview of the literature data and the author’s original data on ballen silica structures occurring in impactites. These structures have been discovered in more than 30 astroblemes, in various types of rocks metamorphosed by impact. Ballen structures show variations in their macromorphology as well as at the micro level in relation to single clasts or their clusters. The micro-level variations are related to the extinction of polarised light of ballen clast units, their stage of development, recrystallisation and other characteristics. Ballen structures appear as fine-grained, coarse-grained or domain mosaics. The latter may have a concentric or side-by-side pattern. Researchers link ballen structures with the transformations of silica polymorphs, crystalline ones such as cristobalite and quartz and amorphous ones such as diaplectic quartz glass or lechatelierite. Another hypothesis is that ballen structures are formed as a result of the embedding of cooled quartz clasts in an overheated rock melt. Considering the complexity of the post-impact processes, any scientific interpretation of the formation of ballen silica clasts is valid. Deposition of phyllosilicate minerals in the areas of contact between clast units is important for the mechanical stability of the clast. Post-impact dynamics can result in the release of clasts as well as their individual units and their addition to the created suevite breccias containing spherules. Thus, ballen structures can be considered as indicators of changes occurring shortly after a meteorite impact.
PL
Artykuł jest przeglądem danych literaturowych wraz z suplementem oryginalnych danych autora na temat struktur krzemionki groniastej (ang. ballen silica) występujących w impaktytach. Klast takiej krzemionki przypomina owocostan winorośli, grono, stąd nazwa polska. Termin krzemionka groniasta ma znaczenie szersze niż termin kwarc groniasty (ang. ballen quartz), często spotykany w literaturze. Struktury te odkryto w ponad 30 astroblemach, w różnych typach skał przekształconych przez impakt meteorytu, najczęściej w stopach skalnych, brekcjach, również w brekcji suewitu, natomiast rzadziej w zmetamorfizowanych skałach podłoża struktury impaktowej. Struktury groniaste wykazują zmienność makromorfologiczną (wielkość, kształt) oraz na poziomie mikro w odniesieniu do pojedynczych klastów lub ich skupień. Zmienność na poziomie mikro ujawnia się w stopniu wygaszania światła spolaryzowanego pomiędzy jednostkami w groniastym klaście, ich etapem rozwoju, rekrystalizacją i innymi cechami. Struktury groniaste krzemionki pojawiają się jako mozaiki drobnoziarniste, gruboziarniste lub domenowe. Te ostatnie mogą mieć wzór koncentryczny lub obokleżny. Badacze łączą struktury groniaste z przemianami polimorfów krzemionki, krystalicznych, takich jak krystobalit i kwarc, oraz amorficznych, takich jak diaplektyczne szkliwo kwarcowe czy lechatelieryt. Inna hipoteza głosi, że struktury groniaste powstają w wyniku zatapiania chłodnych klastów kwarcowych, wcześniej uwolnionych z impaktytów w dynamicznych procesach pouderzeniowych, w przegrzanym stopie, kolejno szybko schładzanym. Biorąc pod uwagę złożoność procesów zachodzących po impakcie, każda naukowa interpretacja powstawania klastów krzemionki groniastej powinna być uważana za cenny element poznania dynamiki procesów pouderzeniowych. Powstawanie minerałów krzemianów warstwowych w obszarach styku jednostek składowych groniastego klastu jest istotne w odniesieniu do jego mechanicznej stabilności. Dynamika pouderzeniowa może skutkować uwalnianiem klastów oraz ich jednostek składowych i dodawaniem ich do tworzonych brekcji suewitu zawierających szkliste sferule. Specyfika współwystępowania planarnych struktur deformacyjnych w kwarcu (PDF) i struktur groniastych dowodzi, że te drugie powstają w fazie pouderzeniowej modyfikacji krateru i impaktytów. Groniaste struktury krzemionki można uznać za wskaźnik zmian zachodzących wkrótce po uderzeniu meteorytu, podczas schładzania stopów skalnych i powstawania brekcji impaktowych.
A specimen of the ‘Gardnos breccia’ was explored, in which granitic gneiss clasts were found to dominate over a dark matrix. Some clasts retained their cataclastic structure. The matrix of the specimen showed various colours, such as gray, black, and beige, while exhibiting different levels of hardness. In addition, the matrix appeared as an almost isotropic and microcrystalline mass. Quartz, K-feldspar, biotite and plagioclase were identified as the main minerals of the rock. No impact-generated features were observed in the minerals; however, biotite crystals showed decorated kinky bands. In cataclastic clasts, a net of black micro-veins was found, which can be interpreted as pseudotachylite. These veins were composed of a dark non-cohesive glassy mass and carbonaceous micro-aggregates. Furthermore, such carbonaceous aggregated particles were also observed in the black matrix. The white-greenish domains containing isotropic and microcrystalline aggregates of quartz and feldspars showed partial anisotropy. Domains were surrounded by a light recrystallising polycrystalline quartz. Hard black clasts of the matrix and the white-greenish domains showed great similarity in their mineral composition. The results of the X-ray diffraction analyses revealed the minerals as quartz, K-feldspar, muscovite and chlorite (clinochlore). In the white-greenish domains, albite was found as an additional component, whereas it was absent in the black matrix. The black matrix, which was interpreted as a pseudotachylite relic, also seemed to contain allochthonic components. Fluorite, calcite, and Fe-oxides were identified as the secondary minerals that were crystallised in the free spaces of the rock, filling the voids and cracks during the postimpact stage. Oriented glassy spherules, fragments with fluidal texture, and a fragment of the semi-vesicular glassy domain were noted in the specimen, which were probably relics of the suevite breccia. Thus, the analysed breccia seemed to be an intermediate type between the ‘Gardnos breccia’ and the black-matrix breccia and suevite.
PL
Uwagi o okazie ‘brekcji Gardnos’, Norwegia. W egzemplarzu skały znanej jako ‘brekcja Gardnos’ klasty granito-gnejsu dominują nad ciemną matriks. Niektóre klasty zachowały strukturę kataklastyczną. Matriks wykazywała różne kolory, szary, czarny i beżowy, a także różną twardość. Matriks była głównie masą izotropową i mikrokrystaliczną. Kwarc, K-skaleń, biotyt i plagioklaz są głównymi minerałami skały. W minerałach nie zaobserwowano struktur charakterystycznych dla impaktu, jednak w kryształach biotytu odnotowano dekorowane spękania ‘kinky’. W klastach kataklastycznych sieć czarnych mikrożyłek można interpretować jako pseudotachylit. Te żyły składają się z ciemnej, niespoistej szklistej masy, w tym z węglistych mikroagregatów. Zagregowane takie cząstki zaobserwowano również w macierzy czarnej. Biało-zielonawe domeny mikrokrystalicznych agregatów kwarcu i skaleni wykazały częściową anizotropię w partiach izotropowych. W domenach, zielonawe centra stopu skaleniowego otoczone są jasnym, rekrystalizującym polikrystalicznym kwarcem. Twarde czarne klasty macierzy i biało-zielonawe domeny charakteryzują się dużym podobieństwem w składzie minerałów. Analizy dyfrakcji rentgenowskiej wykazały, że były to kwarc, K-skalenie, muskowit i chloryt (klinochlor). W biało-zielonawych domenach dodatkowo występuje albit, nieobecny w czarnej macierzy. Macierz ta interpretowana jako relikt pseudotachylitu zawiera prawdopodobnie również składniki allochtoniczne. Fluoryt, kalcyt i tlenki żelaza były minerałami wtórnymi krystalizowanymi w wolnych przestrzeniach skały i wypełniały puste przestrzenie i pęknięcia w procesach poimpaktowych. Zorientowane szkliste sferule, fragmenty o fluidalnej teksturze i fragment szklistej domeny semi-pęcherzykowej są prawdopodobnie reliktami brekcji suevitu. Analizowana brekcja wydaje się być typem pośrednim między ‘brekcją Gardnos’ a brekcją z czarną matriks i suevitem.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.