Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
nr 2
175-186
EN
We characterize the approximation property of Banach spaces and their dual spaces by the position of finite rank operators in the space of compact operators. In particular, we show that a Banach space E has the approximation property if and only if for all closed subspaces F of $c_0$, the space ℱ(F,E) of finite rank operators from F to E has the n-intersection property in the corresponding space K(F,E) of compact operators for all n, or equivalently, ℱ(F,E) is an ideal in K(F,E).
2
Content available remote Strict u-ideals in Banach spaces
100%
EN
We study strict u-ideals in Banach spaces. A Banach space X is a strict u-ideal in its bidual when the canonical decomposition $X*** = X* ⊕ X^{⊥}$ is unconditional. We characterize Banach spaces which are strict u-ideals in their bidual and show that if X is a strict u-ideal in a Banach space Y then X contains c₀. We also show that $ℓ_{∞}$ is not a u-ideal.
3
Content available remote On the compact approximation property
80%
EN
We show that a Banach space X has the compact approximation property if and only if for every Banach space Y and every weakly compact operator T: Y → X, the space 𝔈 = {S ∘ T: S compact operator on X} is an ideal in 𝔉 = span(𝔈,T) if and only if for every Banach space Y and every weakly compact operator T: Y → X, there is a net $(S_γ)$ of compact operators on X such that $sup_{γ}||S_{γ}T|| ≤ ||T||$ and $S_{γ} → I_{X}$ in the strong operator topology. Similar results for dual spaces are also proved.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.