The goal of the paper is to discuss Bayesian estimation of a class of univariate time-series models being able to represent complicated patterns of “cyclical” fluctuations in mean function. We highlight problems that arise in Bayesian estimation of parametric time-series model using the Flexible Fourier Form of Gallant (1981). We demonstrate that the resulting posterior is likely to be highly multimodal, therefore standard Markov Chain Monte Carlo (MCMC in short) methods might fail to explore the whole posterior, especially when the modes are separated. We show that the multimodality is actually an issue using the exact solution (i.e. an analytical marginal posterior) in an approximate model. We address that problem using two essential steps. Firstly, we integrate the posterior with respect to amplitude parameters, which can be carried out analytically. Secondly, we propose a non-parametrically motivated proposal for the frequency parameters. This allows for construction of an improved MCMC sampler that effectively explores the space of all the model parameters, with the amplitudes sampled by the direct approach outside the MCMC chain. We illustrate the problem using simulations and demonstrate our solution using two real-data examples.
We discuss representation of uncertainty in the business cycle clock. We propose approach utilising description of the unconditional mean of the process, applied for modelling dynamics of macroeconomic time series, as a trend component and almost period function in a non-parametric setting. We capture the dynamics over the business cycle, trend component and seasonal fluctuations and possible interactions between these features. A particular values of the almost periodic function are key for representation of the business cycle in a clock, expressing the dynamics according to phase diagram. The set of frequencies interpreted as a properties of the business fluctuations are invariant with respect to filtration methods applied in the procedure.
PL
W artykule omówiono propozycję uwzględnienia niepewności na zegarze cyklu koniunkturalnego. Stosowane podejście bazuje na reprezentacji wartości oczekiwanej realnych wskaźników makroekonomicznych jako sumy trendu i funkcji prawie okresowej w ramach równania nieparametrycznego. Ujmujemy w ten sposób łącznie dynamikę wahań koniunkturalnych, sezonowych, trendu i możliwej interakcji pomiędzy tymi komponentami. Poprzez zastosowanie nieparametrycznych metod filtracji, w celu eliminacji wahań sezonowych oraz trendu, uzyskano wartość pierwszego momentu punktów zegara jako poszczególne wartości funkcji prawie okresowej. Częstotliwości utożsamiane z wahaniami aktywności gospodarczej, jak również te, które charakteryzują dynamikę zegara cyklu, są niezmiennicze ze względu na stosowane metody filtracji.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.