Pharmaceutical wastewater is one of the major complex and toxic industrial effluents containing little or no biodegradable organic matters. In this study, H2O2/UV based advanced oxidation process (AOP) was used to remove organic materials from pharmaceutical industry effluent. For the chemical oxygen demand (COD) removal radiation of medium pressure mercury vapor UV lamp was used in the presence of hydrogen peroxide (H2O2/UV). Results indicated that the efficiency of COD removal depends on the initial concentration H2O2, oxidation time and pH. The efficiency of COD removal at low H2O2con-centration was very low even coupled with UV light, which can be attributed to the low generation of hydroxyl radicals (OH). At high concentration of H2O2 (500 mg/dm3) and optimum pH (pH = 4), 87.6% removal efficiency could be achieved during 70 min oxidation. For high concentration of H2O2 (500 mg/dm3) at pH 3 and 7, the maximum COD removal efficiency was 28.5% and 15.2% respectively, indicating significant roles of pH and H2O2concentration in the process of COD removal.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.