Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
2013
|
tom nr 36 (108) z. 1
195--199
EN
Accurate prediction of the ship squat is of significance to ensure safety passage of ships in restricted waters. In this paper, a first-order Rankine source panel method is adopted to predict the squat of a ship sailing in restricted canal. Taking KVLCC2 tanker as example, numerical calculations are carried out for the ship travelling in a canal with different conditions. The results of squat are compared with measurement data and the results from empirical formulas. The influence of canal geometry on ship squat is investigated.
|
2017
|
tom S 2
147--153
EN
It is important to evaluate the deformation and failure of sandstone in the foundation engineering of coast, river bank and lake shore. While the deformation and failure of sandstone is a comprehensive result of energy release and dissipation, and energy release is the internal reason which leads to global failure of the sandstone. The experimental analysis is conducted on the character of energy revolution of the sandstone specimen by rating loading and unloading, and the catastrophe model is followed in analyzing elastic strain energy accumulation and release in rock deformation and failure. The index based on elastic energy release is proposed to assess the rock brittleness. It is found that increasing water content is to relieve energy release and catastrophe failure of the rock specimen, and weakening the capacity of elastic energy storage. The peak and residual values of elastic energy are raised as the confining pressure increases, and the post-peak released energy decreases progressively. The confining pressure strengthens energy storage and inhibits energy release of the rock specimen, and saturation of rock will weaken this inhibit effect. The brittleness index decreases with increasing confining pressure as the rock specimen transforming from brittle to ductile.
EN
It is important to evaluate the deformation and failure of sandstone in the foundation engineering of coast, river bank and lake shore. While the deformation and failure of sandstone is a comprehensive result of energy release and dissipation, and energy release is the internal reason which leads to global failure of the sandstone. The experimental analysis is conducted on the character of energy revolution of the sandstone specimen by rating loading and unloading, and the catastrophe model is followed in analyzing elastic strain energy accumulation and release in rock deformation and failure. The index based on elastic energy release is proposed to assess the rock brittleness. It is found that increasing water content is to relieve energy release and catastrophe failure of the rock specimen, and weakening the capacity of elastic energy storage. The peak and residual values of elastic energy are raised as the confining pressure increases, and the post-peak released energy decreases progressively. The confining pressure strengthens energy storage and inhibits energy release of the rock specimen, and saturation of rock will weaken this inhibit effect. The brittleness index decreases with increasing confining pressure as the rock specimen transforming from brittle to ductile
EN
Rolling friction representing the energy dissipation mechanism with the elastic deformation at the contact point could act directly on particle percolation. The present investigation intends to elucidate the influence of rolling friction coefficient on inter-particle percolation in a packed bed by discrete element method (DEM). The results show that the vertical velocity of percolating particles decreases with increasing the rolling friction coefficient. With the increase of rolling friction coefficient, the transverse dispersion coefficient decreases, but the longitudinal dispersion coefficient increases. Packing height has a limited effect on the transverse and longitudinal dispersion coefficient. In addition, with the increase of size ratio of bed particles to percolation ones, the percolation velocity increases. The transverse dispersion coefficient increases with the size ratio before D/d<14. And it would keep constant when the size ratio is greater than 14. The longitudinal dispersion coefficient decreases when the size ratio increases up to D/d=14, then increases with the increase of the size ratio. External forces affect the percolation behaviours. Increasing the magnitude of the upward force (e.g. from a gas stream) reduces the percolation velocity, and decreases the dispersion coefficient.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.