Let $C_{α}$ be the Riesz capacity of order α, 0 < α < n, in ℝⁿ. We consider the Riesz capacity density $𝓓̲(C_{α},E,r) = inf_{x∈ ℝⁿ} C_{α}(E∩B(x,r))/C_{α}(B(x,r))$ for a Borel set E ⊂ ℝⁿ, where B(x,r) stands for the open ball with center at x and radius r. In case 0 < α ≤ 2, we show that $lim_{r→ ∞} 𝓓̲ (C_{α},E,r)$ is either 0 or 1; the first case occurs if and only if $𝓓̲ (C_{α},E,r)$ is identically zero for all r > 0. Moreover, it is shown that the densities with respect to more general open sets enjoy the same dichotomy. A decay estimate for α-capacitary potentials is also obtained.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.