An efficient method of updating numerical models for dynamics problems is presented. The objective is to minimize the difference between measured and simulated vibration data. The corresponding optimization problem is formulated in the modal domain and solved using the genetic algorithm (GA) stochastic algorithm. Original modifications of a standard GA are proposed to improve the updating process efficacy. New versions of GA exploit the speeding up procedures developed in the novel accelerated random search (ARS) algorithm. A finite element model of a lumped mass structure is analyzed to validate the approach. A real beam-like structure model is updated, making use of experimental modal data. The enhanced GA enables us to obtain results well correlated with experiments.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.