Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Schölkopf, Smola and Müller (1998) have proposed a nonlinear principal component analysis (NPCA) for fixed vector data. In this paper, we propose an extension of the aforementioned analysis to temporal‑spatial data and weighted temporal‑spatial data. To illustrate the proposed theory, data describing the condition of state of higher education in 16 Polish voivodships in the years 2002–2016 are used.
PL
Schölkopf, Smola i Müller (1998) zaproponowali analizę nieliniowych składowych głównych (NPCA) dla ustalonych danych wektorowych. Niniejszy artykuł zawiera rozszerzenie tej metody na dane czasowo‑przestrzenne oraz czasowo‑przestrzenne geograficznie ważone. Każdy obiekt jest scharakteryzowany za pomocą macierzy Xi, rozmiaru T × p, zawierającej wartości p cech zaobserwowanych w T momentach czasowych, i = 1, …, n. Macierze te są przekształcane nieliniowo do przestrzeni Hilberta i budowana jest scentrowana macierz jądrowa. Ostatecznie macierz ta jest podstawą konstrukcji nieliniowych składowych głównych. W przypadku danych geograficznie ważonych macierz Xizostaje zastąpiona macierzą wiXi, gdzie wijest dodatnią wagą geograficzną związaną z i‑tym miejscem obserwacji, i = 1, …, n. Teoria zilustrowana jest przykładem dotyczącym stanu szkolnictwa wyższego w 16 polskich województwach, notowanego w latach 2002–2016.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.