This paper gives a structure theorem for the class of countable 1-transitive coloured linear orderings for a countably infinite colour set, concluding the work begun in [1]. There we gave a complete classification of these orders for finite colour sets, of which there are ℵ₁. For infinite colour sets, the details are considerably more complicated, but many features from [1] occur here too, in more marked form, principally the use (now essential it seems) of coding trees, as a means of describing the structures in our list, of which there are now $2^{ℵ₀}$.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.