Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
 Diabetes is one of the major challenges of modern medicine, as it is considered a global epidemic of the XXI century. The disease often leads to the development of serious, health threatening complications. Diabetic foot syndrome is a characteristic set of anatomical and molecular changes. At the macroscopic level, major symptoms are neuropathy, ischemia and chronic ulceration of the lower limb. In every third patient, the neuropathy develops into Charcot neuroarthropathy characterized by bone and joints deformation. Interestingly, all these complications are a result of impaired healing processes and are characteristic for diabetes. The specificity of these symptoms comes from impaired molecular mechanisms observed in type 1 and type 2 diabetes. Decreased wound and fracture healing reflect gene expression, cellular response, cell functioning and general metabolism. Here we present a comprehensive literature update on the molecular factors contributing to diabetic foot syndrome.
EN
Cytotoxicity of laronidase (Aldurazyme®), employed in enzyme replacement therapy (ERT) for mucopolysaccharidosis type I (MPS I) and various siRNAs, tested previously in studies on substrate reduction therapy (SRT) for mucopolysaccharidoses, was tested. The enzyme did not cause any cytotoxic effects, and the siRNAs did not inhibit growth of most investigated cell lines. However, some cytotoxic effects of some tested siRNAs were observed in one MPS IIIA cell line. The efficacy of a combination of enzyme replacement therapy and siRNA-based substrate deprivation therapy was tested on three MPS I cell lines. Surprisingly, different results were obtained for different cell lines. The decrease of glycosaminoglycan storage in cells treated simultaneously with both methods was: (i) less pronounced than obtained with either of those methods used alone in one cell line, (ii) similar to that observed for enzyme replacement therapy in another cell line, and (iii) stronger than that obtained with either of the methods used alone in the third cell line. Therefore, it appears that the effects of various therapeutic methods may strongly depend on the features of the MPS cell line.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.