In last years Artificial Intelligence presented a tremendous progress by offering a variety of novel methods, tools and their spectacular applications. Besides showing scientific breakthroughs it attracted interest both of the general public and industry. It also opened heated debates on the impact of Artificial Intelligence on changing the economy and society. Having in mind this international landscape, in this short paper we discuss the Polish AI research community, some of its main achievements, opportunities and limitations. We put this discussion in the context of the current developments in the international AI community. Moreover, we refer to activities of Polish scientific associations and their initiative of founding Polish Alliance for the Development of Artificial Intelligence (PP-RAI). Finally two last editions of PP-RAI joint conferences are summarized.
Counterfactuals are widely used to explain ML model predictions by providing alternative scenarios for obtaining more desired predictions. They can be generated by a variety of methods that optimize various, sometimes conflicting, quality measures and produce quite different solutions. However, choosing the most appropriate explanation method and one of the generated counterfactuals is not an easy task. Instead of forcing the user to test many different explanation methods and analysing conflicting solutions, in this paper we propose to use a multi-stage ensemble approach that will select a single counterfactual based on the multiple-criteria analysis. It offers a compromise solution that scores well on several popular quality measures. This approach exploits the dominance relation and the ideal point decision aid method, which selects one counterfactual from the Pareto front. The conducted experiments demonstrate that the proposed approach generates fully actionable counterfactuals with attractive compromise values of the quality measures considered.
The relations between multiple imbalanced classes can be handled with a specialized approach which evaluates types of examples’ difficulty based on an analysis of the class distribution in the examples’ neighborhood, additionally exploiting information about the similarity of neighboring classes. In this paper, we demonstrate that such an approach can be implemented as a data preprocessing technique and that it can improve the performance of various classifiers on multiclass imbalanced datasets. It has led us to the introduction of a new resampling algorithm, called Similarity Oversampling and Undersampling Preprocessing (SOUP), which resamples examples according to their difficulty. Its experimental evaluation on real and artificial datasets has shown that it is competitive with the most popular decomposition ensembles and better than specialized preprocessing techniques for multi-imbalanced problems.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.