Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
During the Triassic/Jurassic boundary interval and in the Jurassic, the Triassic carbonate platforms occupying the northern shelf of the Western Tethys were subjected to disintegration. Record of these processes in the Alpine-Carpathian area is incomplete and contains a number of stratigraphic gaps. In the High-Tatric succession of the Tatra Mountains (Central Western Carpathians) stratigraphic gaps expressed by unconformity surfaces occur between the Triassic and the Middle Jurassic. In particular areas, the Triassic is directly overlain by the Dudziniec Formation (Sinemurian-Bajocian), the Smolegowa Formation (Bajocian), the Krupianka Formation (Bathonian) or the Raptawicka Turnia Formation (Callovian-Hauterivian). The occurrence of Bajocian and Bathonian deposits is limited to isolated lenticular bodies or to infillings of neptunian dykes penetrating the Triassic. Spatial relations between particular Jurassic lithosomes and the occurrence of stratigraphic gaps between particular units allow discerning four main unconformities. In the stratigraphical order these are: base of the Dudziniec Format ion (erosional unconformity), base of the Smolegowa Formation (penacordance or parat conformity), base of the Krupianka Format ion (erosional unconformity) and base of the Raptawicka Turnia Formation (drowning unconformity). Following episodes of erosion modified the previously developed unconformity surfaces, which resulted in complex modern architecture of the Triassic/Jurassic contact, as well as between particular Jurassic formations.
EN
Modern computational chemistry offers a wide variety of methods allowing us to investigate very complex systems. In the current study, we would like to focus on ab initio and classical molecular dynamics to show their applications in our research. Car-Parrinello molecular dynamics (CPMD) was carried out to study compounds possessing intra- and intermolecular hydrogen bonds. Our simulations were performed in vacuum, in solvent and in crystalline phase. It is well known that intramolecular hydrogen bonding stabilizes 3D structure of molecules. The strength of the bonding and its features are influenced by inductive and steric effects. Our short overview on CPMD application to systems with intramolecular HB we start from Schiff and Mannich bases -model compounds to investigate intramolecular hydrogen bonding. Other examples reported here derive from the class of N-oxide type compounds. Special attention was devoted to another representative structure in such investigations – picolinic acid N-oxide. In some examples listed above proton transfer phenomena occurred making these compounds interesting objects for future excited state studies. Aliphatic boronic acid was used as a model example to study intermolecular hydrogen bonds based on CPMD method. Further, classical molecular dynamics was applied to investigate proteins. Here, we would like to report our results for two biomolecules. The first one is proteinase K for which the impact of mercury(II) on its catalytic center was studied. The second one is streptavidin. For the latter one its complexes with biotinylated ligands were investigated. We close our review with a paragraph describing further development and perspectives related to CPMD method.
EN
The Lower Jurassic to Aalenian carbonate-clastic Dudziniec Formation exposed in the autochthonous unit of the Tatra Mountains (Kościeliska Valley) hosts neptunian dykes filled with various deposits. The development of the fissures took place in multiple stages, with the same fractures opening several times, as is indicated by their architecture, occurrence of internal breccias and arrangement of the infilling sediments. Various types of internal deposits were derived in a different manner and from different sources. Fine carbonate sediments, represented by variously coloured pelitic limestones, calcilutites and fine calcarenites, most probably come from uplifted and corroded carbonate massifs (possibly from the allochthonous units of the High-Tatric succession). Products of weathering, both in dissolved form and as small particles, were washed into the sedimentary basin of the autochthonous unit, and redeposited within the dykes. The sandy varieties of the infillings, represented by red, ferruginous calcareous sandstones, come directly from the host rocks or from loose sediments present on the sea bottom at the time of fracturing. The most probable age of the infilling sediments is Sinemurian to Pliensbachian. The occurrence of dykes of this age is yet another feature confirming that the sedimentary development of the Lower Jurassic sandy-carbonate facies in the autochthonous unit was strongly influenced by synsedimentary tectonic activity, such as block-faulting.
EN
Theoretical calculations on 5-amino-3-methylisoxazole-4-carboxylic acid hydrazide Schiff base derivatives using Polarizable Continuum Model in order to account for water solvation effects are presented. The compounds studied exhibit biological (immunosuppressing or immunostimulating) activity, measured experimentally in various assays. The quantum chemical DFT calculations are used to obtain electronic descriptors of molecular structure. These descriptors, together with other physicochemical parameters, are used to derive quantitative relationships between the structure and the biological activity.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.