It is a basic fact in infinite-dimensional Lie theory that the unit group $A^{×}$ of a continuous inverse algebra A is a Lie group. We describe criteria ensuring that the Lie group $A^{×}$ is regular in Milnor's sense. Notably, $A^{×}$ is regular if A is Mackey-complete and locally m-convex.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We investigate the finite-dimensional Lie groups whose points are separated by the continuous homomorphisms into groups of invertible elements of locally convex algebras with continuous inversion that satisfy an appropriate completeness condition. We find that these are precisely the linear Lie groups, that is, the Lie groups which can be faithfully represented as matrix groups. Our method relies on proving that certain finite-dimensional Lie subalgebras of algebras with continuous inversion commute modulo the Jacobson radical.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.