The present study investigates the quantitative structure-activity relationship (QSAR) of 2-phenylnaphthalene ligands on an estrogen receptor (ERα). A data set comprising 70 derivatives of 2-phenylnaphthalene is used. The most suitable parameters, classified as topological, geometric and electronic are selected using a combination of genetic algorithm and multiple linear regression (GA-MLR) methods. Then, selected descriptors are used as inputs for a self-training artificial neural network (STANN). Analysis of the results suggests that the STANN model shows superior results compared to the multiple linear regressions (MLR) by accounting for 91.0% of the variances of the antiseptic potency of the 2-phenylnaphthalene derivatives. The accuracy of the 8-4-1 STANN model is illustrated using leave-multiple-out (LMO) cross-validation and Y-randomization techniques. [...]
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.