Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study analyzes the effects of dry land salinity, climate severity, and pollution on groundwater quality in the Middle Moulouya basin. Our research provides insights into certain pollutants and their sources and discusses the impact of saline soil and dry weather. A comprehensive understanding of these factors is essential for managing water resources and promoting sustainable resource use in the area. In fact, the use of a database relating to the major elements, viz. potassium (K+), calcium (Ca2+), sodium (Na2+), magnesium (Mg2+), bicarbonates (HCO3-), sulfates (SO42-, nitrates (NO3-), chlorides (Cl-) has proved to be effective to assess the hydrochemical features of groundwaters and their suitability for both aims (i.e., irrigation and drinking). The Middle Moulouya basin’s subterranean water is slightly acidic to basic, with a pH range of 6.8 to 7.66 and mild to brackish water at specific sites. Furthermore, in line with the hydrochemistry diagrams, groundwater can be classified into three main types: Ca-Cl, Ca-HCO3, and Ca-Mg-Cl type. Moreover, the results pertaining to the overall quality of groundwater regarding Moroccan control standards guidelines indicate that: (i) 32.43% of the groundwater samples are of excellent quality, (ii) 24.32% of the collected water points are of good quality, (iii) 32.43% have medium quality, (iiii) and only 10.82% are of poor and very poor quality (i.e., 5.41% for each class). Finally, based on the Wilcox method, a significant percentage of groundwater sites are suitable for farming.
EN
The rapid increase in municipal solid waste in developing areas, as demonstrated by the Fez landfill, has led to the production of leachate with alarmingly high levels of pollutants, highlighting the urgent need for comprehensive analysis and advanced treatment methods. This study uncovered exceptionally high concentrations of organic and inorganic substances, as well as heavy metals in the leachate, with chemical oxygen demand (COD) reaching 57,100 mg/L, biochemical oxygen demand (BOD5) at 39.400 mg/L, and a significant presence of iron (Fe) at 1,370 mg/L, underscoring the extreme contamination levels. Importantly, this research introduced a notable contribution to the field by calculating a leachate pollution index (LPI) of 88.8, a figure considerably exceeding the limits considered safe for environmental discharge. The results of the current study complement the already existing information about the critical environmental threat posed by the leachate, emphasizing the necessity for extensive treatment prior to release into the environment. The study insights are crucial for developing effective strategies to reduce the risks to aquatic ecosystems and public health, as well as for guiding policy and practice in waste management in developing regions.
EN
This work developed a groundwater quality index for the BAKOYA aquifer of the Al Hoceima city, Morocco, as well as the monitoring of physicochemical and bacteriological parameters of major chemical elements in the water used as drinking water for a large population of the region. The samples were taken in the coastal aquifer Bakoya Al Hoceima. The waters of the Rif region are highly mineralized and marked by sodium chloride or sodium-sulfate facies related mainly to a process of marine intrusion and dissolution of evaporite minerals included in the site rocks. The results obtained with the WQI index showed that 12 samples are eligible for excellent quality, while 18 samples are not good enough for consumption as drinking water. The results show that the groundwater samples studied are characterized by medium to high salinity, exceeding 4000 μS/cm. This mineralization of marine beginning is somewhat because of the severe abuse of groundwater and avalanches, known in the region because of the earthquake, which accelerates the phenomenon of saltwater intrusion in the coastal karstic aquifer. The salinity of this water reaches salinization levels C3 and C4, as classified by the Wilcox diagram, and the waters of the Bakoya massif have been qualified as very hard. Examination of the hydrochemical results with the drinking water quality norms set by the World Health Organization shows that most of the water inspected is not suitable for utilization, mainly because of the high levels of EC, TDS, and linked to marine intrusion, as well as the urban pollution factor that increases the content in the water.
EN
In the present study, micromechanical modeling techniques were employed to examine the mechanical properties of a hemp/clay composite material. This composite consists of hemp fibers incorporated into a clay matrix, a configuration chosen in response to environmental considerations and the natural advantages of hemp fibers, which include their lightweight nature and their considerable strength and stiffness relative to their weight. The approach adopted incorporates both localization and homogenization methodologies along with the three-phase model to provide an in-depth analysis of the composite's behavior. The findings from this theoretical model show a promising correlation with empirical data, demonstrating the model's efficacy in capturing the composite's mechanical response.
EN
Deterioration of water quality is of great concern, particularly in coastal aquifers where it has become difficult to meet water quality standards with appropriate salt content. As groundwater is the only alternative source of freshwater in the coastal plain of Ghiss-Nekor in northern Morocco, there is a need to assess its sustainability and suitability for drinking and irrigation purposes. For this purpose, data obtained from ABHL, corresponding to 13 monitoring wells existing in the downstream part of Ghiss-Nekor aquifer, were gathered and analyzed using a combination of statistical methods and GIS mapping tools. Various qualitative parameters namely; pH, turbidity, salinity, dissolved oxygen, conductivity, Chloride (Cl-), Sulphate (SO4) and some Nitrogen compounds were investigated and compared according to World Health Organization standards. These results suggest that groundwater samples are chemically dominated by chloride anions followed by sulphate anions; high levels of SO4 result from the mineral dissolving of evaporites in addition to the impact of seawater intrusion and the discharge of wastewater without adequate pre-treatment, while Cl- concentrations (408.3–1512.3 mg/L), strongly correlated with electrical conductivity, are related to the impact of seawater intrusion. A few samples along the Nekor River, considered as the aquifer’s recharge zone, showed the lowest salinity levels (<1.5 g/L) compared to the coastal samples which were classified as the most conductive and mineralized (EC greater than 3000 μS/cm) due to the combined impact of mixing with seawater and high evaporation rates. The outcome of this study reveals that the major dissolved anions assessed in the groundwater of the Ghiss-Nekor aquifer do not respect the stipulated criteria in terms of human consumption; therefore, all possible measures should be taken to protect and restore the water quality in this vulnerable coastal aquifer.
EN
Groundwater quality degradation is a pressing concern in semi-arid coastal regions, exemplified by the Ghiss-Nekor aquifer in northeastern Morocco, spanning 100 km2. This study adopts a comprehensive approach, utilizing chloro-alkaline indices, hydrochemical facies diagrams, the water quality index (WQI), and the synthetic pollution index (SPI) to assess the groundwater quality and its evolution. Key findings reveal that the Ghiss-Nekor ground-water is brackish, primarily suitable for irrigation due to high total dissolved solids (TDS). Salinization stems from reverse cation exchange, as indicated by hydrochemical analyses. WQI assessments highlight the inadequacy of this groundwater for drinking purposes, with SPI classifying 54% of wells as moderately polluted. Fine particles mitigate marine intrusion in the northwest. Overlaying land-use and electrical conductivity maps identifies the areas with poor-quality groundwater, notably near an unregulated landfill, a coastal tourist site, and a wastewater treatment facility. Ionic analysis identifies multiple saline sources, with nitrate and sulfate contributions standing out. While the study offers valuable insights, limitations include the need for ongoing data collection and source identification challenges. Nonetheless, the research underscores the urgency of effective water management, particularly around the landfill site situated above permeable deposits, offering an innovative approach with global applicability for addressing groundwater quality issues in semi-arid coastal areas.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.