Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Application of the simple least mean squares (LMS) adaptive filter of to the Warsaw Exchange Market (GPW) has been analyzed using stocks belonging to WIG20 group as examples. LMS filter has been used as a binary classifier, that is, to forecast the sign of changes in the (normalized) stock values. Two kinds of data has been used, namely, the differenced and double-differenced normalized close values of stocks. It has been shown that while the predictive power of LMS filter is virtually zero for the differenced series, it rises significantly in the case of double-differenced series for all analyzed stocks. We attribute this to the better stationarity properties of the double-differenced time series.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.