Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Inductive dimensions modulo simplicial complexes and ANR-compacta
100%
|
|
nr 2
223-247
EN
We introduce and investigate inductive dimensions 𝒦 -Ind and ℒ-Ind for classes 𝒦 of finite simplicial complexes and classes ℒ of ANR-compacta (if 𝒦 consists of the 0-sphere only, then the 𝒦 -Ind dimension is identical with the classical large inductive dimension Ind). We compare K-Ind to K-Ind introduced by the author [Mat. Vesnik 61 (2009)]. In particular, for every complex K such that K * K is non-contractible, we construct a compact Hausdorff space X with K-Ind X not equal to K-dim X.
2
Content available remote The Suslinian number and other cardinal invariants of continua
51%
EN
By the Suslinian number Sln(X) of a continuum X we understand the smallest cardinal number κ such that X contains no disjoint family ℂ of non-degenerate subcontinua of size |ℂ| > κ. For a compact space X, Sln(X) is the smallest Suslinian number of a continuum which contains a homeomorphic copy of X. Our principal result asserts that each compact space X has weight ≤ Sln(X)⁺ and is the limit of an inverse well-ordered spectrum of length ≤ Sln(X)⁺, consisting of compacta with weight ≤ Sln(X) and monotone bonding maps. Moreover, w(X) ≤ Sln(X) if no Sln(X)⁺-Suslin tree exists. This implies that under the Suslin Hypothesis all Suslinian continua are metrizable, which answers a question of Daniel et al. [Canad. Math. Bull. 48 (2005)]. On the other hand, the negation of the Suslin Hypothesis is equivalent to the existence of a hereditarily separable non-metrizable Suslinian continuum. If X is a continuum with $Sln(X) < 2^{ℵ₀}$, then X is 1-dimensional, has rim-weight ≤ Sln(X) and weight w(X) ≥ Sln(X). Our main tool is the inequality w(X) ≤ Sln(X)·w(f(X)) holding for any light map f: X → Y.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.