Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The study investigated the mechanisms through which the hyperosmolarity might induce detrusor overactivity (DO). We compared the bladder activity in response to partial and complete blockade of TRPV1-6 and TRPA1 receptors. Experiments were performed on 42 rats. DO was induced by using hyperosmolar saline. All animals were randomly divided into six groups. The measurements represent the average of five bladder micturition cycles. Hyperosmolar saline induced DO. The complete blockade of TRPV1-6 and TRPA1 prevented DO. The partial blockade of TRPV1 didn't prevented DO. In the voiding phase periodical bladder contractions complexes occurred leading to slow urine flow due to bladder distension. Ruthenium red and capsaicin resulted in complete disorganisation of detrusor muscle contractility impairing urine voiding and leading to constantly lasting urine retention in healthy rats. Conclusions: hyperosmolar-induced DO is mediated by TRPV and TRPA1 channels; the hyperosmolar stimuli of urinary bladder might be transmitted mostly via ruthenium red sensitivity pathway.
EN
Highly concentrated urine may induce a harmful effect on the urinary bladder. Therefore, we considered osmolarity of the urine as a basic pathomechanism of mucosal damage. The influence of both cyclophosphamide (CYP) and hyperosmolar stimuli (HS) on the urothelium are not well described. The purpose was to evaluate the effect of CYP and HS on rat urothelial cultured cells (RUCC). 15 Wistar rats were used for RUCC preparation. RUCC were exposed to HS (2080 and 3222 mOsm/l NaCl) for 15 min and CYP (1 mg/ml) for 4 hrs. APC-labelled annexin V was used to quantitatively determine the percentage of apoptotic cells and propidium iodide (PI) as a standard flow cytometric viability probe to distinguish necrotic cells from viable ones. Annexin V-APC (+), annexin V-APC and PI (+), and PI (+) cells were analysed as apoptotic, dead, and necrotic cells, respectively. The results were presented in percentage values. The flow cytometric analysis was done on a FACSCalibur Flow Cytometer using Cell-Quest software. Treatment with 2080 and 3222 mOsm/l HS resulted in 23.7 ± 3.9% and 26.0 ± 1.5% apoptotic cells, respectively, 14.3 ± 1.4% and 19.4 ± 2.7% necrotic cells, respectively and 60.5 ± 1.4% and 48.6 ± 5.3% dead cells, respectively. The effect of CYP on RUCC was similar to the effect of HS. After CYP the apoptotic and necrotic cells were 23.1 ± 0.3% and 17.9 ± 7.4%, respectively. The percentage of dead cells was 57.7 ± 10.8%. CYP and HS induced apoptosis and necrosis in RUCC. 3222 mOsm/l HS had the most harmful effect based on the percentage of necrotic and apoptotic cells.
3
Content available remote Magnetically induced vagus nerve stimulation and feeding behavior in rats
75%
EN
Vagus nerve (VN) contribute to the bidirectional communication between the gastrointestinal tract and the central nervous system. Stimulation of the VN by a magnetically-driven solenoid with parameters similar to those during food-induced stomach distension has been thought to mimic short-term signaling of satiety and suppress food intake. In this study, the determination of optimal parameters of vagal neuro-modulation to achieve decreased food intake with a resulting reduction in body mass of rats is explored as therapy to treat obesity. The experimental design consisted of three groups of obese adult male Wistar rats: Group 1: VEMF - with solenoid's electrodes placed on the left VN in the magnetic field exposure (MFE); Group 2: EMF - without solenoid's electrodes on the VN in MFE; Group 3: CON - without solenoid's electrodes on the VN outside the MFE. This study suggests that the rats with solenoid's electrodes placed on the left VN significantly decreased their food intake, weight gain and serum leptin concentrations when compared to that of the CON group. PP levels were found to be higher in the VEMF group when compared to the controls groups. It was found that the most effective parameters of vagal stimulation on eating behavior were 3631, 7861, 14523 A2 x h/m2. The magnetic field by unknown mechanisms also influences feeding behavior. This study suggests that vago-vagal reflexes are involved in the feeding homeostasis and that neuromodulation might be an effective method for managing obesity. Further studies are required to confirm these effects in humans.
EN
Aim of study was to verify whether pulsating electromagnetic field (PEMF) can affect cancer cells proliferation and death. U937 human lymphoid cell line at densities starting from 1x106 cells/ml to 0.0625x106 cells/ml, were exposed to a pulsating magnetic field 50Hz, 45±5 mT three times for 3 h per each stimulation with 24 h intervals. Proliferation has been studied by counting number of cells stimulated and non-stimulated by PEMF during four days of cultivation. viability of cells was analyzed by APC labeled Annexin V and 7-AAD (7-amino-actinomycin D) dye binding and flow cytometry. Growing densities of cells increase cell death in cultures of U937 cells. PEMF exposition decreased amount of cells only in higher densities. Measurement of Annexin V binding and 7-AAD dye incorporation has shown that density-induced cell death corresponds with decrease of proliferation activity. PEMF potentiated density-induced death both apoptosis and necrosis. The strongest influence of PEMF has been found for 1x106cells/ml and 0.5x106 cells/ml density. To eliminate density effect on cell death, for further studies density 0.25x106 cells/ml was chosen. Puromycin, a telomerase inhibitor, was used as a cell death inducer at concentration 100 µg/ml. Combined interaction of three doses of puromycin and three fold PEMF interaction resulted in a reduced of apoptosis by 24,7% and necrosis by 13%. PEMF protects U937 cells against puromycin- induced cell death. PEMF effects on the human lymphoid cell line depends upon cell density. Increased density induced cells death and on the other hand prevented cells death induced by puromycin.
EN
Exposure to the magnetic field has remarkably increased lately due to fast urbanization and widely available magnetic field in diagnosis and treatment. However, biological effects of the magnetic field are not well recognized. The myoelectric activity recorded from the gastrointestinal and urinary systems is generated by specialized electrically active cells called interstitial cells of Cajal (ICCs). Thus it seems rational that ICC have significant vulnerability to physical factors like an electromagnetic field. The aim of this study was to evaluate the influence of pulsating electromagnetic field (PEMF) (frequency 10 kHz, 30ms, 300 µT burst, with frequency 1Hz) on ICCs density in the rat gastrointestinal tract. Rats were divided into two groups (n=32). The first group was exposed to PEMF continuously for 1, 2, 3, and 4 weeks (n = 16), and the second group (n=16) served as a control. Tissue samples of the rat stomach, duodenum and proximal colon were fixed and paraffin embedded. The tangential sections of 5µm thickness were stained immunohistochemically with anti-c-Kit (sc-168) antibody and visualized finally by DAB as chromogen (brown end product). C-Kit positive branched ICC-like cells were detected under the light microscope, distinguished from the c-kit-negative non-branched smooth muscle cells and from the c-kit positive but non-branched mast cells and quantitatively analyzed by MultiScan computer program. Apoptosis detection was performed with rabbit anti-Bax polyclonal antibody (Calbiochem, Germany) and LSABTM 2 visualization system. The surface of c-Kit immunopositive cells decreased after exposure to PEMF in each part of the gastrointestinal tract. Reduced density of ICCs was related to exposure time. The most sensitive to PEMF were ICCs in the fundus of the stomach and in the duodenum, less sensitive were ICCs in the colon and pacemaker areas of the stomach. No marked changes in ICC density in the pyloric part of the stomach were observed. We demonstrate that the PEMF induced apoptosis dependent decrease in ICC expression.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.