Black pepper (Piper nigrum L.) is one of the most widely used spices in the world. Root rot disease is induced by Fusarium solani f. sp. piperis and causes severe yield losses of this crop in the Amazon region. In this work we used the suppression subtractive hybridization to identify differentially expressed sequences in roots of black pepper infected by F. solani f. sp. piperis. Sequences coding for putative proteins related to oxidative burst and defense response, such as superoxide dismutase, cytochrome p450, and alpha-amylase inhibitors/lipid transfer protein, comprised 28.4% of SSH clones according to computational analyses. Furthermore, semi-quantitative RT-PCR assays showed accumulation of putative cysteine proteinase inhibitor and pathogenesis-related protein 4 transcripts at late stage of infection that can help to explain the success of this pathogen in causing root rot disease in black pepper. The results obtained here contribute to improve our understanding about this plant–pathogen interaction.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.