Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper is concerned with the asymptotic behavior of the nonoscillatory solutions of the forced fractional differential equation with positive and negative terms of the form [formula] where t ≥ c ≥ α ∈(0, 1), η ≥ 1 is the ratio of positive odd integers, and [formula] denotes the Caputo fractional derivative of y of order α. The cases [formula] are considered. The approach taken here can be applied to other related fractional differential equations. Examples are provided to illustrate the relevance of the results obtained.
EN
Using the well-known monotone iterative technique together with the method of upper and lower solutions, the authors investigate the existence of extremal solutions to a class of coupled systems of nonlinear fractional differential equations involving the ψ–Caputo derivative with initial conditions. As applications of this work, two illustrative examples are presented.
EN
The authors present a new technique for the linearization of even-order nonlinear differential equations with a sublinear neutral term. They establish some new oscillation criteria via comparison with higher-order linear delay differential inequalities as well as with first-order linear delay differential equations whose oscillatory characters are known. Examples are provided to illustrate the theorems.
EN
In this paper the authors study the existence of positive radial solutions to the Kirchhoff type problem involving the p-Laplacian [formula] where λ > 0 is a parameter, Ωe = {x ∈ RN : |x| > r0}, r0 > 0, N > p > 1, Δp is the p-Laplacian operator, and f ∈ C([r0,+∞) × [0,+∞) ,R) is a non-decreasing function with respect to its second variable. By using the Mountain Pass Theorem, they prove the existence of positive radial solutions for small values of λ.
EN
The authors present Kneser-type oscillation criteria for a class of advanced type second-order difference equations. The results obtained are new and they improve and complement known results in the literature. Two examples are provided to illustrate the importance of the main results.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.